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ABSTRACT
Personalized anticancer therapy requires continuous consolidation of emerging 

bioinformatics data into meaningful and accurate information streams. The use of novel 
mathematical and physical approaches, namely topology and thermodynamics can enable 
merging differing data types for improved accuracy in selecting therapeutic targets. We 
describe a method that uses chemical thermodynamics and two topology measures to 
link RNA-seq data from individual patients with academically curated protein-protein 
interaction networks to select clinically relevant targets for treatment of low-grade glioma 
(LGG). We show that while these three histologically distinct tumor types (astrocytoma, 
oligoastrocytoma, and oligodendroglioma) may share potential therapeutic targets, the 
majority of patients would benefit from more individualized therapies. The method involves 
computing Gibbs free energy of the protein-protein interaction network and applying a 
topological filtration on the energy landscape to produce a subnetwork known as persistent 
homology. We then determine the most likely best target for therapeutic intervention using 
a topological measure of the network known as Betti number. We describe the algorithm 
and discuss its application to several patients.

INTRODUCTION

The overriding principle of personalized medicine 
is the uniqueness of each individual patient, creating an 
equally unique molecular signature of the patient’s cancer. 
After more than half a century of cancer treatment based 
on non-specific chemotherapy and radiation, oncologists 
are beginning to embrace precision oncology as means 
of incorporating these distinctive, patient-specific cancer 
molecular signatures. The goal of precision medicine 
is to select the best, i.e. an individual specific, therapy. 
It recognizes that based on the genetic and phenotypic 
background of an individual, a different biological 
pathway may be engaged in tumor initiation and 
progression. In most cancers more than one genomic and 
proteomic alteration is identified exposing our inability 

to establish the importance of one molecular alteration 
over another. Much too often the oncologist faced with 
the dilemma of multiple molecular targets ends up 
enrolling the patient on one of the available Phase 1 
clinical trials, “matching” no more than a single mutation. 
Not infrequently a patient may be placed on the wrong 
pharmacological agent if the Phase I trial that targets a 
less important genomic alteration. Furthermore, because 
most present clinical trial designs allow for testing of 
a single agent per trial only, in cases where more than 
one genomic alteration is present – the other activated 
pathways will not only remain active, their activity 
may get further escalated by inhibiting a single target. 
Most cancer signaling pathways show a large degree of 
redundancy, which precludes the possibility of finding a 
“silver bullet”. For successful therapy it is important to 
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recognize and preserve the eco-evolutionary forces within 
the tumor microenvironment [1]. It is therefore critical to 
develop methods that can analyze the varied interaction of 
the majority if not all of the detected genomic alterations. 
The use of such a pathway-analysis based model, which 
studies the individual tumor signatures within the context 
of well-established protein-protein interaction (PPI) 
networks may prevent us from inadvertently placing our 
patients on therapies targeting the less-than-optimally 
effective of the molecular alterations. 

These protein-protein interaction networks reflect 
cell dynamics, and mirror the well-coordinated and 
controlled interactions within a cell. A set of all known 
interactions gives rise to a network, which can be 
characterized and analyzed using rigorous mathematical 
and physical methodology. A state-of-the-art example of 
a PPI network database is Biogrid (http://thebiogrid.org),  
first described by Breitkreutz et al. in 2002 [2], and 
subsequently updated [3]. These academically curated 
PPI networks, despite being continuously updated and 
representing the state-of-the-art today, have not yet been 
completely mapped out from the presently available 
open-reading frames of genes and proteins. As such, 
any calculations of thermodynamic properties done on 
a today’s network can represent only an estimate that 
reflects the present state of knowledge about protein-
protein interactions.

That said, the effort currently being exerted on 
developing mathematical, physical and biological methods 
for selecting the best therapeutic target is not in vain and 
allows for rational implementation of new cancer cell 
biology discoveries which may result in the development 
of future therapeutics. We describe a novel methodology 
for using the extensive amounts of online bioinformatics 
data to analyze high-throughput genomic information 
from a patient’s tumor (in this case RNA sequence data) 
to improve the quality of present-day clinical decisions. 
The application of mathematics in molecular systems 
biology, and the descriptions and conjectures about 
the application of group theory and abstract algebra in 
molecular networks, have been well-reviewed previously 
[4, 5]. For example, some of the present authors recently 
found that the entropy of protein-protein interaction (PPI) 
networks is well correlated with 5-year patient survival 
[6], making findings at the level of subcellular networks 
of relevance to clinical applications. Similarly, an abstract 
mathematical concept known as the cardinality of the 
automorphism group, when applied to cancer protein-
protein interaction networks also correlated with patient 
survival [7], enabling predictions about the potential 
gains in patient survival as a result of optimized target 
determination. The accuracy of these predictions can be 
further enhanced through the use of additional topological 
measures such as Betti number or homology of cancer PPI 
networks [8] as is elaborated on below.

We surmise that the eventual development of reliable 
clinical tools enabling clinical oncologists to correctly 
analyze and apply an individual’s genomic information 
is likely to require a much wider array of mathematical 
and physical tools, but we contend that the best present 
computational approach should involve a combination of 
Gibbs free energy [8, 9] and homology [10], an approach 
we refer to as Gibbs homology. It is important to clarify 
that while the term “homology” may be used by molecular 
biologists and biochemists to describe similarity in protein 
sequence or structure; mathematicians use this term to 
describe similarity in topological surfaces. As such, the 
term persistent-homology describes a topological surface 
feature that is observed despite the presence of noise or 
surface roughness. In this manuscript, we use the term 
persistent homology as a topological measure on Gibbs 
free energy surfaces for protein-protein interaction 
networks. We combine the concept of Gibbs energy on PPI 
networks to compute the persistent homology, and then 
use Betti number to compute a therapeutic target or targets 
according to a set of rules described below.

In the subsequent paragraphs, we introduce 
the theoretical background for this method, using 
the extensive microarray and RNAseq transcription 
information available in The Cancer Genome Atlas 
(TCGA, http://cancergnome.nih.gov). We will introduce a 
novel method for superimposing transcription information 
from individual patients (or the extensive RNAseq data 
available through The Cancer Genome Atlas - TCGA - 
http://cancergnome.nih.gov) onto a human protein-protein 
interaction network with the goal of selecting targets for 
therapeutic intervention.

RESULTS AND DISCUSSION

Low-grade glioma (LGG) is an ill-defined subgroup 
of glial tumors, associated on the basis of their clinical 
features (slow growth) and some histological features 
(GFAP and low proliferative fraction). There are three 
main histological subtypes: low grade astrocytoma, 
oligoastrocytoma, and oligodendroglioma. While these 
may represent very distinct molecular entities, their 
biological behavior is sufficiently similar for this grouping. 
Most importantly, because these slow growing tumors 
have a very low proliferative fraction and do not respond 
to chemotherapy and radiation, there are no existing 
effective therapeutic interventions. The identification 
of molecularly guided targeted therapies, which do not 
depend on the proliferative fraction in the tumor, would 
provide viable therapeutic strategies for poor prognosis 
cancers such as DIPG or low-grade thalamic gliomas.

Using the TCGA data we computed the Gibbs free 
energy for the homology subnetwork of each patient with 
LGG, and found statistically significant differences in 
energy between the three different cell types (Figure 1). 
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The Gibbs free energy of oligoastrocytoma is significantly 
different from oligodendroglioma (p < 0.0001), and there 
is a trend to statistically significant difference between 
astrocytoma and oligoastrocytoma (p = 0.0746). 

A Pareto chart ranking the “best therapeutic targets” 
for these 514 patients with LGG available from TCGA 
(Figure 4) shows that the most frequent best target in 
145/ 514 patients is novel. While HSPA8 (Heat Shock 
protein 8) has been associated with spinocerebellar 
ataxia type 17 in the past, it has not been considered a 
target for glial cancers. Similarly, YWHAG (Tyrosine 
3-Monooxygenase/Tryptophan 5-Monooxygenase 
Activation Protein, Gamma) appears to be the best 
target for 137/ 514 patients with LGG, and even though 
it is an active participant in the signaling through the 
RAF1, AKT1 and Jun oncogenic pathways, it has not 
been considered to be a therapeutic target in gliomas. 
Consequently, these two proteins represent novel targets 
for a substantial fraction of the patient population analyzed 
in our study. The other bars in the chart can be interpreted 
similarly. Recall that we identified the potential therapeutic 
targets by deleting each individual node (protein) from 
the Gibbs homology subnetwork at energy threshold 
of 32, and finding the one protein that produced the most 
significant change in complexity. Because there may be 
more than one equivalent target (those with equivalent 
drop in complexity associated with different proteins), the 
sum of all potential therapeutic targets is higher than the 
total number of patients (in this case 786 targets for 514 
patients, Supplementary Table S1).

Interestingly, the analysis of the homology networks 
for patients in whom elimination of HSPA8 leads to most 
significant changes in complexity revealed similarities in 
the homology subnetworks despite the differences in tissue 
type. This is likely due to the observation that the protein 
neighbors of HSPA8 within a PPI network are the same in 
the different tissue types (astrocytoma, oligodenroglioma 
and oligoastrocytoma) and the expression of HSAP8 
is determined by the degree entropy rather than by the 
tissue type. For example, the astrocytoma patient (Patient 
ID 2 in Table 1) had the following protein interaction 
neighbors to the HSPA8: SUMO2, TP53, UBC, RHOA, 
EGFR, APC, HSP90AA1, and YWHAG, consistent with 
the published and well documented signaling pathway 
interactions of HSPA8. The patient with oligoastrocytoma 
(Patient ID 294 in Table 1) had the identical set of 
protein interaction neighbors. In contrast, the patient 
with oligodendroglioma (Patient ID 8 in Table 1) had, in 
addition to the same identical set of neighbors, PARP1 
as an additional neighbor suggesting recruitment of an 
additional signaling pathway. As the overexpression of 
PARP1 becomes sufficient to pass the energy threshold 
of 32, the change in Gibbs free energy is reflected in 
the different targets in patient ID 2 and patient ID 8. We 
provide in Supplementary Table S1 patient IDs, Gibbs 
energy for the homology network for the whole network, 

entropy for the subnetwork and for the whole network, 
Betti numbers for the numbers for the subnetwork, 
number of edges, etc. but we do not identify the respective 
neighbors.

As we have shown, many patients with distinct 
glioma subtypes had HSPA8 computed as the best 
target, suggesting they may be treated with the same 
agent that inhibits of silences this particular protein. 
However, the actual selection of this therapeutic target 
involves additional bioinformatics analysis. Using 
HSPA8 as a therapeutic target in patient ID 203 with 
oligodendroglioma (Table 1) would not be sufficient 
because there were two equivalent therapeutic targets - 
HSPA8 and HDAC4. The proteins interacting with HSPA8 
(SUMO2, TP53, UBC, RHOA, EGFR, HSP90AA1, 
YWHAG) and the set of proteins interacting with HDAC4 
(UBC, YWHAE, RELA, NCOR1, SUMO2, YWHAQ, 
NCOR2, SMAD3, EP300, POLR2A, and ACTB) overlap 
in only two proteins (SUMO2 and UBC) and their 
pathways are not identical. While the neighborhoods 
of HSPA8 and HDAC4 have similar Gibbs free energy, 
because they were defined at the same energy threshold, 
they will require different therapeutic modulation. Figure 3  
shows the homology subnetwork for patient #203 
with oligodendroglioma. Note that some proteins are 
common to both sets - UBC and SUMO2 suggesting the 
involvement of proteasome/ubiquitin pathways. Again, 
while this pathway has been the favored target in multiple 
myeloma, it has not been explored therapeutically in 
glioma. HSPA8 and HDAC4 proteins are colored dark 
green or yellow, respectively, the neighbors of HSPA8 are 
green and the neighbors of HDAC4 are yellow. All other 
proteins are light pink.

The protein neighbors of HSPA8 and HDAC4 
have similar, albeit not identical, Gibbs free energy and 
form part of the persistent homology, as the inhibition 
of HSPA8 or HDAC4 can drop the network complexity 
(Betti number) by a comparable amount. Because 
reducing complexity or Gibbs free energy can be 
correlated with increased probability of 5-year survival 
[6, 8], we expect that Gibbs free energy reduction on the 
homology subnetwork will also correlate with improved 
survival, but the evidence remains to be clinically 
evaluated. For now, these complexity measures can 
be used to gain insights into these pathways and assist 
clinicians in making informed decisions regarding 
therapeutic options, especially if they can reply on 
either approved drugs for a given type of cancer or the 
use of off-label medications which would eliminate 
the costly and time-consuming process of novel drug 
development.

In order to determine what role HDAC4 and HSPA8 
along with their similar energetic neighbors play in cancer, 
we submitted the list of proteins to DAVID (https://david.
ncifcrf.gov/) and KEGG (http://www.genome.jp/kegg/). 
This allowed us to obtain the disease pathways known to 
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be associated with these proteins.  We found for example, 
EGFR is involved in colorectal cancer, pancreatic cancer, 
endometrial cancer, prostate cancer, melanoma, bladder 
cancer and non-small cell lung cancer, and it has been 
previously considered a good therapeutic target in glioma 
[11, 12] chiefly because it is associated with infiltrative 
gliomas [13]. The importance of TP53 in glioma is well 
established and not dissimilar from its importance in 
colorectal cancer, pancreatic cancer, endometrial cancer, 
prostate cancer, thyroid cancer and basal cell carcinoma. 
However, p53 is mutated in almost 50% of all cancers 
and there is a dire need to develop activators of mutated 
forms of this protein. In contrast, RELA, which has come 
up in a number of glioma molecular studies [14, 15] has 
as of yet not been thought of as a therapeutic targeted. 
Yet, its role in progression of prostate cancer, pancreatic 
cancer, chronic myeloid leukemia, acute myeloid 
leukemia and small cell lung carcinoma suggests a strong 
therapeutic potential. One can make the same argument 
for all the neighbors of HSPA8 and HDAC4, some of 
which are of known significance and others new to the 
role. The role of RHOA in cancer, even though listed in 
“pathways to cancer” in KEGG, is unknown. SMAD3 
is involved in colorectal cancer, pancreatic cancer and 
chronic myeloid leukemia, APC is involved in colorectal 
cancer, endometrial cancer and basal cell carcinoma, and 
HSP90AA1 in prostate cancer, but none of these would 
be considered as targets by a neuro-oncologist. While 
HDAC4 expression has been used to identify patients 
likely to respond to temozolomide or radiotherapy [16], 

and a high HDAC4 expression is a signature of low-grade 
glioma [17, 18], it has not been viewed as having a direct 
therapeutic value to date. Yet, chromosomal instability 
quantified by HDAC expression can be closely correlated 
with clinical outcomes in many cancers [18], and more 
specifically in glioma [19]. In summary, this relatively 
simple analysis of Gibbs Homology, Betti-defined proteins 
and their energetic neighbors may help identify potentially 
effective therapeutic targets, some of which may have 
been previously identified in other cancers, and some of 
which will be entirely new. 

The most important point made by this 
thermodynamic analysis of TCGA data on low grade 
glioma is that very similar pathways can be employed 
by tumors of different histological features. While all 
cells of the human body may have the same set of genes, 
each cell uses a very different set of genes to facilitate 
its physiological maintenance and growth. The gene sets 
involved in the growth and progression of a cell that has 
undergone malignant transformation may be very different 
from the normally engaged genes as developmentally 
dormant pathways may be used. Some of these 
developmentally silent genes may be more frequent than 
others. Out of the 514 patient cancers investigated in this 
paper, 145 used HSPA8 as its main mechanism of action 
and 369 employed an alternative pathway. Yet, while the 
frequency of HSPA8 gene alteration may be sufficient 
for a successful clinical trial, it may not be of benefit for 
most patients. This underscores the importance of having 
individualized data when making therapeutic decisions. 

Figure 1: Gibbs free energy for The Cancer Genome Atlas (TCGA) patient data for Low Grade Glioma (LGG). The 
TCGA contained data of 194 patients with astrocytoma, 129 patients with oligoastrocytoma, and 191 patients with oligodendroglioma 
(total low grade gliomas 514). We found significant difference in the average total free energy (Gibbs homology) between astrocytoma and 
oligoastrocytoma (p = 0.0746), and between oligoastrocytoma and oligodendroglioma (p < 0.0001). As such the clinical observation of 
poorer survival in oligodendroglioma is reflected in the increased entropy (increasingly negative free energy) of these cancers.
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Table 1: Four examples of patients with different types of low grade glioma

Histologic_diagnosis Days-
to-death

TCGA ID
(Patient ID) Entorpy Nominal 

betti
Gibbs of 

homology net

Gibbs 
of whole 
network 

Number 
of edges in 
homology 

net

Change 
in Gibbs 

after target 
removal

Targets and 
reduced Betti

Astrocytoma
Gr3 1335 TCGA-CS-4942

(Patient 2) 2.461440845 20 −94.37907586 −6206.432916 130 −26.50085696 (u’HSPA8’,15)

Oligodendroglioma Gr2 639 TCGA-CS-5395
(Patient 8) 2.64534633 28 −100.465829 −6571.397908 140 −28.44663419 (u’HSPA8’,22)

 (u’H2AFX’,22)

Oligodendroglioma Gr2 N/A TCGA-FG-8182
(Patient 203) 2.826529111 23 −99.2066031 −6551.667165 144 −27.99459365 (u’HDAC4’,18)

(u’HSPA8’,18)

Oligoastrocytoma Gr2 1933 TCGA-HT-8013
(Patient 294) 2.663861005 26 −94.90096615 −6257.933862 150 −26.62233376 (u’EEF1A1’,21)

(u’HSPA8’,21)

Figure 3: Gibbs homology subnetwork example for a single patient. For a patient with oligodendroglioma (patient ID #203 in 
Supplemental Table S1]. The algorithm found two equivalent targets of the homology subnetwork at energy threshold 32. Both of these 
targets, HDAC4 and HSPA8 are shown in dark yellow and green respectively with the lighter colors indicating their respective neighbors. 
The remaining proteins represent non-neighbors and are labeled pink.

Figure 2: Pareto chart of the computed potential therapeutic targets. Potential therapeutic targets were derived by first 
computing the Gibbs homology at energy threshold of 32 followed by sequential deletion (with replacement) of individual proteins. The 
proteins, which when deleted produced the biggest reduction in Betti number, are listed as the potentially therapeutic targets. The chart 
suggests that HSPA8 (a heat shock protein) is the most common “target” being present in 145 patients out of the total 514, but it does not 
represent the best target in 72% of the patients (369/514). This is a very important observation suggesting that a successful treatment of 
glioma requires a more personalized approach in majority of patients.
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For a patient, the statistics are simple, their tumors either 
do employ a pathway, or they do not. 

CONCLUSIONS

We have explored the potential of overlaying 
real transcription information from a patient’s tumor 
on academically curated protein-protein interaction 
networks to define energetically important nodes. The 
use of these thermodynamic and topological measures 
enabled realistic selection of potential therapeutic targets, 
because the combination of the two topological concepts 
(i.e. landscape filtration, called here an energy threshold) 
and Betti numbers (which quantify the presence of rings 
in a network) can identify the pathways most important for 
the growth and dissemination of the patient’s tumor. It is 
likely that in a not-too-distant future, similar mathematical 
and physical tools may be used prospectively for 
designing biopsy-guided therapy. However, as we show, 
a retrospective analysis of genomic profiles of patients 
enrolled in clinical trials may reveal which patients were 
exposed to therapeutically appropriate targets, and provide 
a unique window of understanding for our failures to 
successfully implement targeted therapies. It is likely that 
with careful retrospective analysis, many “failed” agents 
may be returned to our pharmacopeia, because even 
though some patients may have a therapeutic target similar 
to other patients, most patients have a unique molecular 
signature requiring a combination of optimally selected 
therapeutic agents. The recent emergence of precision 
medicine [20, 21] represents recognition of this new 
therapeutic trend.

THEORETICAL BACKGROUND

The energy between interacting molecules 
(interaction energy) is referred to in statistical 
thermodynamics as a chemical potential. Whenever the 
concentration of one molecular species changes, the 
reactions in which this molecular species participates is 
therefore affected as well. Thus, a change in one protein 
concentration will percolate through the network affecting 
multiple other molecular species, and changing the 
network’s chemical potential. The concept is applicable to 
any large-scale molecular network, including established 
biological protein-protein interaction networks such as 
Biogrid®. The energetic state of a cell can therefore be 
described by the sum of the chemical potential (Gibbs 
free energy) of all interacting pairs of proteins within the 
network; and the perturbations and variations in chemical 
energy can be graphically represented by a rugged energy 
landscape such as the one illustrated in Figure 4. Hence 
the chemical energy of a PPI network can be represented 
as an energy landscape [22, 23].

We have previously described how to use RNA 
transcription data and protein- protein interaction data 
to compute the Gibbs free energy for various types of 
cancers represented by their PPI networks [8, 9]. It should 
be stressed that the collective RNA transcriptome can still 
be informative about the relevant biological aberrations 
with the caveat that the total RNA extracted from a tumor 
tissue represents an average of a very heterogenous 
collection of cells, and embodies not only the actual 
cancer clone(s), but also the activated host stroma. The 
transcriptional information provides a good estimate of 

Figure 4: Filtration of energy landscape of a protein-protein interaction network (PPI). Each of the energy wells represents 
an individual protein in the human- scale PPI. The deeper the well, the lower the free energy and the higher the entropy. Gibbs free energy 
is a negative number representing the concentration of the protein and the degree entropy. By sliding a filtration plane up from the deepest 
well, the plane intersects gradually with a greater number of energy wells, and because the energy landscape is an abstraction of the PPI 
network, the Gibbs free energy “captures” a different number of nodes in the network at each level. Thus, at deeper energy thresholds a 
much lower number of nodes is captured, and at higher energy thresholds more and more nodes are captured. The subnetworks captured at 
the different energy thresholds are persistent homology, and we show two such networks for illustrative purposes.
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protein concentration, as the increased/ decreased gene 
transcription (whether due to mutational activation or 
due to stromal induction) invariably leads to an increase 
in protein production. This has been substantiated in past 
investigations where it was found that correlations between 
mRNA and protein concentrations in a large number of 
experiments across five different species spans the range 
of 40–80% [24, 25]. Similarly, a separate study found 
the correlation between mass spectrometry proteomic 
information and transcriptomic information to be 83% for 
multiple tissue types [26, 27]. While there is an emerging 
need for caution as the recent emergence of RNA-seq 
replaces gene expression microarrays [28], the multiple 
sources of transcription data contained in TCGA can be 
corrected for the different sets of biases. The differential 
expression data from microarrays may be biased by the 
need to decide a priori what content to place on the arrays, 
the RNA-seq, which does not use probes or primers, needs 
to convert mRNA (and other RNAs) to cDNA, which is 
then used as the input to a next-generation sequencing 
library. The RNA-seq has the ability to uncover new and 
rare driving mutations, but it is only as good as the ability 
to use the most appropriate library. Until it is established 
that RNA-seq derived transcription information is 
comparable to microarray methods, and until there is a 
sufficient number of studies comparing gene expression 
levels by microarrays vs. those obtained using RNA-seq, 
the two may be best analyzed separately. Yet, a large-scale 
comparison of gene expression levels by microarrays 
and RNA-seq using TCGA data for fourteen different 
cancer types found a Spearman correlation of about 0.8 
[29], and the comparison of Affymetrix microarray data 
to the Illumina RNA-Sequencing technology using breast 
cancer data revealed a correlation of 0.7 [30], which gives 
a certain amount of confidence in the use of RNA-seq data 
for PPI network analyses.

Given the close correspondence of microarray 
and RNA-seq data, we can use either of these data 
types as surrogates for protein concentration estimates. 
Koussounadis et al. [31] show that differentially expressed 
mRNAs correlate significantly better with their protein 
product than non-differentially expressed mRNAs, 
mainly because of abundance [32]. These studies increase 
confidence for the use of differential mRNA expression 
for biological discovery and for inferences from mRNA 
expression. While the correlation of RNA levels and 
protein levels is over 80% [31, 32], it should be recognized 
here that the degree of activity of a protein due to post-
translational activation cannot be estimated at the present 
time. We recommend that whenever possible an actual 
estimate of protein activity (rather than expression) be 
used for Gibbs Homology calculation. 

We combine this surrogate “protein concentration” 
with the PPI and create an energetic landscape represented 
by chemical potential of protein-to-protein interactions 
(Figure 4). Complex dynamical systems such as biological 

cells exhibit ordered (stable) dynamics under normal 
physiological conditions, but these complex landscapes 
may be subject to dynamic changes with any fluctuations 
in cell phenotype [33]. For example, the trajectory 
of a transcriptomic landscape following exposure of 
human promyelocytic leukemia cells (HL60) to either 
dimetholsulfoxide or all-trans-retinoic acid suggests that 
cell fates represent high-dimensional attractor states. 
While we will not explore the trajectory of homogeneous 
cell populations, we will draw heavily on this energy 
landscape analogy.

We compute Gibbs free energy for a given cellular 
population as described previously [9, 10]. Then, making 
use of hierarchical decomposition of critical nodes of a 
network [34], we compute persistent homology of the 
network. The function computes Gibbs free energy, a real 
negative number for which the smaller the value (larger 
negative), the deeper the minima in the energy landscape. 
More specifically, the Gibbs free energy for an individual 
node, i, or individual protein, is given by:

ln i
i i

jj

cG c
c

=
∑

 Eq (1) 

where the ci is the concentration of the protein, or 
the normalized (rescaled between 0 and 1) expression 
of protein i. The sum in the denominator of Eq. (1) is 
taken over all nodes j in the neighborhood, including i. 
The natural logarithm of this dimensionless number in 
conventional chemical thermodynamics represents the 
Gibbs free energy for an individual protein in the network 
[9]. The overall Gibbs free energy for the entire network is 
found by summing over the nodes: ii

G G=∑  

Each node in the network has an associated real 
negative number representing its respective Gibbs free 
energy creating a schematic of a complex network mapped 
onto a rugged landscape (Figure 4). Persistent homology 
is the persistent landscape structure that remains even 
in presence of noise, but the concept remains valid 
even in absence of noise. Consider a horizontal plane 
(a filtration plane) moving upwards from the bottom as 
depicted in Figure 4. At a low level there are only a very 
few deep minima, but as the filtration plane moves up, 
it cuts through more and more energy wells, capturing 
increasingly more minima. Since these energy wells 
represent Gibbs free energy of the network, the small 
sets of energy wells captured by the filtration plane at 
each energy threshold represent specific subnetworks. 
The subnetworks, which represent the deepest (highest 
absolute value) of Gibbs free energy, are called a persistent 
homology, and we will hereinafter refer to these energetic 
subnetworks as Gibbs homology networks.

We can now use the analogy of flooding a landscape 
as a way to intuit the dynamics of energy landscapes, a 
concept well explored in the past [35]. The deepest minima 
will be filled first, followed by the next deepest, etc.  
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These deep minima represent the energy minima of a 
persistent homology, where neighboring wells are closely 
related in depth, or in this case, closely related in energy.

DATA SOURCES AND METHODS

We collected RNA-seq data for low grade glioma 
(LGG) from The Cancer Genome Atlas (TCGA) hosted 
by the National Institutes of Health (http://cancergnome.
nih.gov), and well-described in the past [17]. We focused 
on the LGG dataset [36] of the human protein-protein 
interaction network (Homo sapiens, 3.3.99, March, 2013) 
from BioGrid (http://thebiogrid.org) containing 9561 
nodes and 43,086 edges [3, 37], and used the adjacency 
list (i.e. the matrix of protein-protein interactions) of this 
network for the calculations. For computing the Gibbs free 
energy we used Python 2.6.4 with networkX functions.

The workflow for the calculations of the Gibbs-
homology and determination of the potential protein 
target(s) for therapeutic intervention is shown in the 
flowchart of Figure 2. Starting with the relevant RNA-seq 
(or microarrays) transcription data and the human scale 
PPI we computed the Gibbs free energy for every node 
and for the total network according to Equation (1). Note 
that there is a necessary re- scaling of the RNA expression 
data into the 0 to 1 range (not shown in the flow chart), 
which is done as follows: the RNA-seq data are typically 
normalized counts that can be converted to log2 using the 

formula: log2(normalized count + 1). This conforms the 
RNA-seq data to a comparable scale of the microarray 
transcription data, which are typically log2 normalized. 
The rescaling of either type data is done by first finding 
the minimum (emin) and maximum (emax) of the individual 
patient dataset, and the log transformed data for each 
gene, ei in that RNA-seq or transcriptome vector is then 
processed as: 

ci = (ei − emin )/(emax − emin )
where ci represents the rescaled value and is used 

in Eq (1).
This rescaling is justified from both a mathematical 

perspective and a chemical physics perspective. Negative 
values in the argument of the natural logarithm of Eq. (1) 
are undefined, and the argument from a chemical physics 
perspective is based on concentrations. If a gene is very 
strongly down-regulated (i.e. there is a very low RNA 
expression), it is unlikely to produce much protein and as 
such we can assign the protein concentration to zero for 
the most down-regulated gene in that patient’s dataset. In 
contrast, when a gene is highly up-regulated, or has a high 
RNA count, it is likely to be translated into a great deal of 
protein. The rescaling assigns a value of 1 to the highest 
up-regulated gene (i.e. highest concentration of protein 
corresponding to this gene).

The rescaled dataset is then analyzed at a set 
energy filtration threshold (Figure 5). The selection of 
the particular energy filtration threshold is done as a 

Figure 5: Basic operations flow. RNAseq or microarray-based transcription data are used as surrogates for protein concentration. The 
data are overlaid on the human protein-protein interaction network (BioGrid®) and Gibbs free energy of each node is computed according 
to Equation (1). An energy threshold is then applied to produce the Gibbs homology subnetwork, and Betti numbers are computed for all 
nodes in this subnetwork. Each node in the subnetwork is then sequentially removed with replacement, and the Betti numbers re-computed 
following each removal. The outcome is an array containing all of the relevant proteins with their respective Betti numbers. The array can 
be searched for proteins, which, when removed lead to the greatest drop in Betti number. If the same drop in Betti is achieved by removal 
of more than one protein, two or more protein targets may be considered equivalent.



Oncotarget9www.impactjournals.com/oncotarget

simple optimization between having too many potential 
therapeutic targets that would make a clinical application 
impossible, and between having inadequate coverage 
of relevant therapeutic targets. The filtration threshold 
selection is a one-time task and is based on the Betti 
number [8]. The Betti number represents the number of 
rings in a network consisting of four or more proteins 
with a well-documented interaction within the network. If 
the removal of a node (protein) from the network results 
in a large drop in the Betti number (hence a substantial 
reduction in the number of large enough rings), it reflects 
a large reduction in network complexity caused by a 
node removal. Thus, the change between nominal Betti 
calculated for the entire homology subnetwork, and 
the Betti calculated after a protein is removed, is a good 
estimate of the importance the protein has in maintaining 
the network complexity. The node(s) with the highest drop 
in complexity should be considered a good therapeutic 
target(s), because lowering network complexity is 
associated with improved survival of patients with cancer 
[8]. This node should then correspond to the most optimal 
protein target for inhibition by a pharmacological agent. The 
best therapeutic target is therefore identified when both of 
the above conditions are met, i.e. when enough complexity 
(determined by the energy filtration threshold) is present, 
and a large enough drop in complexity (determined by Betti 
number) has been achieved by inhibiting the target.

When the energy threshold is low (e.g. 8, 16), the 
complexity of the subnetwork is also low, and removing 
any individual protein will drop the Betti number by 
the same amount resulting in as many as eight or more 
equivalent targets. In contrast, at high-thresholds 
(e.g. 64, 128) typically only one node leads to a large 
drop in the Betti number. The energy filtration threshold 
was optimized by identifying the best targets through a 
systematic (sequential) application of energy thresholds 
between 8 and 128 (i.e. 8, 16, 32, 48, 64, 128). We found 
the most clinically relevant information is to be derived 
at threshold of 32, where an average of about 1.514 
equivalent targets (SD+/− 0.915) is found. At this level, 
for the majority of patients one or two potential targets 
are found, but there may be up to three equivalent targets. 
This provides a good margin for selection of treatment 
options aimed at inhibiting these proteins as targets for 
pharmacological agents.

At each threshold, and for each patient in the 
population of patients, we computed Gibbs homology, 
total Gibbs energy (nominal energy) for the homology 
subnetwork, and the nominal Betti number for this Gibbs 
homology. The information for each patient in the set 
therefore included Gibbs homology subnetwork, Gibbs 
energy, and Betti number. We then sequentially removed 
(with replacement) each protein from the Gibbs homology 
subnetwork, recomputed the total Gibbs energy of the 
subnetwork, and determined the respective change in Betti 
number. This provided us with an array of protein targets 

and their respective changed Betti numbers, as well as the 
respective change in Gibbs energy for each patient in the 
set. By searching this array for the smallest Betti number 
(the most reduced Betti), which corresponds to the biggest 
reduction in complexity of the homology subnetwork we 
could make specific personalized predictions for the best 
potential therapeutic targets. We re-iterated this process for 
each patient in the set, and kept track of the lowest Betti 
number(s) and respective target(s) (See Table 1).
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