
J Biol Phys
DOI 10.1007/s10867-016-9410-y

ORIGINAL PAPER

Thermodynamic measures of cancer: Gibbs free energy
and entropy of protein–protein interactions

Edward A. Rietman1 · John Platig2,3 ·
Jack A. Tuszynski4,5 ·Giannoula Lakka Klement6,7,8

Received: 3 November 2015 / Accepted: 27 January 2016
© Springer Science+Business Media Dordrecht 2016

Abstract Thermodynamics is an important driving factor for chemical processes and for
life. Earlier work has shown that each cancer has its own molecular signaling network that
supports its life cycle and that different cancers have different thermodynamic entropies
characterizing their signaling networks. The respective thermodynamic entropies correlate
with 5-year survival for each cancer. We now show that by overlaying mRNA transcrip-
tion data from a specific tumor type onto a human protein–protein interaction network, we
can derive the Gibbs free energy for the specific cancer. The Gibbs free energy correlates
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with 5-year survival (Pearson correlation of –0.7181, p value of 0.0294). Using an expres-
sion relating entropy and Gibbs free energy to enthalpy, we derive an empirical relation for
cancer network enthalpy. Combining this with previously published results, we now show a
complete set of extensive thermodynamic properties and cancer type with 5-year survival.

Keywords Cancer · Signaling networks · Gibbs free energy · Entropy · Protein-protein
interactions · 5-year survival

1 Introduction

Early insights into protein–protein interaction (PPI) networks suggest that the complexity of
changes in PPI network topology correlates with cancer stage [1, 2] and clinical outcomes
[3]. If validated prospectively, this would offer a powerful tool not only in better prognos-
tic but also in therapeutic applications by providing a rational basis for personalized drug
selection that is informed by the mRNA expression data.

Several published studies appear to corroborate the above hypothesis by linking molec-
ular data with clinical outcomes. Paliouras et al. [2] used mass spectrometry on prostate
clinical samples to show how changes in the protein–protein interaction network architec-
ture relate to Gleason score and prostate specific antigen (PSA). Similarly, Freije et al.
[3] showed that gene expression profiling of gliomas correlated with patient survival. We
expect any dimensionality reduction of the expression vector to correlate with cancer stage,
although the correlation may be poor because of inherent noise in the data and/or from
assumptions inherent in the dimensionality reduction algorithm. In order to reduce the com-
bined uncertainty inherent to a PPI network or the expression datasets and to better reconcile
disparate PPI networks, one can combine PPI networks, transcriptome, and survival data.
The consolidation of these data sets into a coherent abstract model is not only likely to
improve the quality of the information in each of these previously unrelated data types, but
may improve the data quality sufficiently to use the information for personalized therapies.

There are several ways of measuring complexity of protein–protein interaction networks.
Chung et al. [4] observe that loops of three to six proteins are highly prevalent in PPIs
and that 96% of the proteins in these loops play a significant role in some biological func-
tion including mRNA metabolic processing and cell cycle regulation. Recent papers [5, 6]
describe topological metrics of PPI cancer networks that correlate with 5-year cancer patient
survival. Of particular interest are Breitkreutz et al. [7] and Takemoto and Kaori [8] who
introduce a thermodynamic measure based on degree distribution. A degree distribution is
essentially a Boltzmann probability distribution [9, 10], which allows us to consider real-
world statistical thermodynamics as a conceptual framework within which to view cancer
initiation and progression. This is easy to visualize at a molecular level because Boltzmann’s
entropy is a function of the natural-log of the number of equivalent ways, or the number
of energy states, for a molecule (a protein). If a protein interacts with two neighbors, it has
two different energy configurations for that molecule. If a protein interacts with 20 neigh-
bors, it has a greater number of energy configurations and hence higher entropy. Boltzmann
entropy is directly related to network degree entropy in PPIs and represents a quantitative
measure of the network’s complexity. A simple and ordered network will have a low value
of entropy associated with it. A complex and less-ordered network will be characterized by
a higher value of entropy. However, in thermodynamics, entropy reflects only one aspect of
a statistical system consisting of many units, its arrangement among possible microstates.
In addition, the constituent units may physically interact, which brings another aspect into
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the picture, the system’s enthalpy. Together, enthalpy and entropy define a function of state
called the Gibbs free energy that contains both aspects of the system’s behavior.

As motivated by the statements above, the main focus of this paper is on thermody-
namics of protein–protein interaction networks in cancer, with an emphasis on entropy and
Gibbs free energy as two key measures describing the complexity and chemical energetics
of interactions in these networks. We therefore do not discuss Shannon, Kolmogorov–Sinai,
or other information-based entropies, which may be relevant to the problem in general
but not particularly useful in the present context. In the present manuscript, we review
some thermodynamic entropy measures of PPI networks and then describe how to com-
pute Gibbs free energy for cancer networks and show its correlation with 5-year survival,
which provides retrospective validation of these concepts. In a more general context, we
suggest that these energy views of the PPI are close analogies to the Waddington epigenetic
landscape.

2 Brief review of entropy measures to PPI networks

Without attempting an exhaustive review of entropy of PPI networks, we discuss a few key
papers. Rashevsky [11] was the first to suggest degree entropy as a complexity measure
for graphs. His “graphs” were aliphatic molecular structures, so by modern standards, they
were small graphs. The extension of information theory to thermodynamics in networks
was made by Dehmer and Mowshowitz [12], in their review of the application of various
entropy measures to network analysis. One of the first papers to discuss an information-
based entropy was by Demetrius and Manke [13] who studied evolution of networks as a
means to understand biological fitness. Their model assumes directed links in the network
and they utilize Kolmogorov–Sinai entropy along with Markov processes to describe the
evolution (and thus the robustness) of the networks. They extended that work to include
cellular robustness [14].

As we pointed out in the introduction, being able to combine PPI and transcriptome data
could enable more accurate use of these inherently noisy data, and with appropriate analysis
may lead to actionable insight for clinical applications.

West et al. [15] describe fixed PPI architecture and mRNA expression data to derive
unique weighted networks for each cancer studied. They start with a PPI from www.
pathwaycommons.org and transcription data for different cancers. They modified the PPI
to contain weighted connections by incorporating the transcriptome data. The weights are
Pearson correlation coefficients of gene expression between genes i and j , across multi-
ple samples of the same cancer type. Then computing entropy, they suggest that the best
drug targets are those protein nodes with the highest robustness. Their suggested targets are
strongly based on the mRNA expression levels, across a population of samples. If some pro-
tein has a very high up-regulated mRNA expression, one could have deduced the importance
of that node in the network without actually computing the entropy. This is how many tar-
gets are “discovered.” Benzekry et al. [6] suggests a different approach to target discovery
based on the unique architecture of each cancer PPI.

Other recent attempts are being made to combine PPI network data and RNA expres-
sion data. The quest to find correlations between the PPI networks/transcription data and
survival/prognosis has continued. In 2012, Liu et al. [16] defined a measure called state-
transition-based local network entropy (SNE). It is a Shannon information measure that
is probabilistically, or conditionally, dependent on the previous state of a local dynamical
network—a Markov process. They used mRNA expression data at different stages of tumor
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development, overlaid it on PPI network data, and showed that SNE changes significantly
with cancer progression. Others have used Shannon entropy measure to show that gene
expression patterns of melanoma and prostate cancers group according to cancer stage [17].
Shannon entropy, unlike degree entropy, is not a thermodynamic measure.

Banerji et al. [18] use a slightly similar method to West et al. [15] to devise a different
network entropy. They also use the PathwayCommons network and gene expression data.
Using a mass action principle they assume a higher interaction probability if two genes are
highly expressed and their protein products interact. Their main point is to show a difference
in entropy between stem cells and differentiated cells. They also show entropy differences,
with linear correlation, between normal tissue, cancer tissue, and cancer cell lines. This is
very similar to the work of Rietman et al. [1], and the work we describe here.

The work we describe here is an extension of the results by [7, 8] who used unique
KEGG (www.genome.jp/kegg) pathway networks for each cancer. They then computed the
degree-entropy, or as we argued above, Boltzmann entropy, for the nodes in the network
and the overall network. They showed a linear correlation between this entropy measure and
overall 5-year cancer survival rate. Here, we describe how to calculate Gibbs free energy
for the nodes in the PPI, and we show a linear correlation between Gibbs free energy and
5-year survival rate. We also derive an empirical relation between the observed entropy and
the observed Gibbs free energy.

We now introduce Gibbs free energy, a thermodynamic measure encompassing both net-
work complexity and cell thermodynamics (as represented by transcriptome), and show that
it can be correlated with cancer survival. As we will see, Gibbs free energy is correlated
with network complexity because it is thermodynamically a function of entropy and the
network entropy is correlated with network complexity by degree distribution (Boltzmann
distribution).

3 Theoretical background

The homeostasis of cells is maintained by a complex, dynamic network of interacting
molecules ranging in size from a few dozen Daltons to hundreds of thousands of Daltons.
Any change in concentration of one or more of these molecular species alters the chemical
balance, or in terms of thermodynamics, chemical potential. These changes then percolate
through the network, affecting the chemical potential of other species. The end result rep-
resents perturbations in the network manifesting as concentration changes, giving rise to
changes in the energetic landscape of the cell. These energetic changes can be described as
chemical potential on an energetic landscape only different in kind from the Waddington
epigenetic landscape.

Mutational events invariably alter the chemical potential of one or more proteins and/or
other molecular species within a single cell. Yet, two neighboring cancer cells in the same
microenvironment may exhibit a different energetic landscape because the chemical poten-
tial is different within the two cells. Naturally, when a bundle of cells is harvested, for
example in a biopsy, and the cells are digested to extract RNA for transcription analysis,
the transcriptome is essentially an average of that bundle of cells. Since any given gene is
typically transcribed into multiple copies of its corresponding mRNA molecule, the tran-
scriptome can act as a surrogate for the concentration of the proteins. To support this
conjecture, several research groups have described correlations of mRNA with protein con-
centrations [19, 20] and found Pearson correlation, r , to range from 0.4 to 0.8, in a large
number of experiments across five different species. More recently, studies of the human
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proteome across multiple tissue types included in the relevant transcriptomic analysis, and
found an average correlation between transcription signal and mass spectrometry proteomic
information to be 83% [21, 22].

In this connection, Huang et al. [23] proposed that RNA expression data are surrogate
metrics for the protein state of cells and represent the concentration of specific numbers
of individual proteins exposed to either dimethylsulfoxide or all-trans-retinoic acid. Thus,
the authors first introduced the concept of a chemical energy landscape for cells. Following
exposure to the chemical perturbation, the gene expression data were collected at different
time points, cleaned to remove low-expression genes, and a self-organizing map created. A
principal component analysis was then used to produce a map showing the energetic (chem-
ical potential) trajectory of the cells. The transcriptome has been shown to correlate with
protein concentrations [21, 22], and can be generally correlated to the state of the cell. Cer-
tainly there are high-throughput protein concentration techniques [24], but the transcriptome
provides a higher number of measurements (probes) identified with gene label and readily
mapped to protein–protein interaction networks (e.g., thebiogrid.org).

The dynamics of cells are coordinated and controlled by protein–protein interactions,
and the complete set (known) PPIs gives rise to a network. The state-of-the-art database of
these PPI networks is BioGRID (http://thebiogrid.org), described by Breitkreutz et al. [25].
It should be stressed that, even though state-of-the-art today, it is not complete, and does not
describe the full species-specific PPI networks. There are several reasons for this including
the fact that the proteome has not been fully mapped from open-reading frames to genes
and proteins. Consequently, calculations of the networks’ properties such as entropy or the
Gibbs free energy should be taken as estimates reflecting the present state of knowledge
about these networks.

Here, we report the outcomes of merging two types of data, transcriptome and PPI net-
works, to compute the energetic state of cancer. We show a correlation between the Gibbs
free energy and 5-year patient survival for different cancers. Below, we describe the cal-
culation of Gibbs free energy of cells, outline the data sources, and present the results and
discussion.

Proteins do not interact simultaneously with large numbers of neighbors, as would be
implied by the PPI network view of some hub proteins (e.g., p53). Instead, the hub protein
may be interacting with one or two neighbors at a time, forming a complex nanomachine
part such as a ribosome. We make the ensemble assumption that many copies of the hub
protein may be located in many places in cells and each of the copies may be interacting
with a different protein partner. Therefore, we can assume an ensemble of the protein of
interest, as well as that its interactions with its neighbors, are akin to an ideal gas mixture.

To help in the understanding of the calculation of Gibbs free energy from the transcrip-
tome and the PPI perspective, we present a simple example shown in Fig. 1. Figure 1 shows
a small network with individual nodes (proteins) within the network (labeled A, B, C, D,
E, and F). For example, D represents a protein connected to E, C, and F by its edges (or
links), which represent the interactions between the proteins. Because there is no direction-
ality assigned to the links, the network is said to be an undirected graph. We compute the
Gibbs free energy for protein D below. The network reveals that protein D interacts with
proteins C, E, and F, and assuming an ideal mixture of these three proteins, we can assign a
nominal chemical potential:

μD = ln

[
cD

cC + cD + cE + cF

]
(1)

http://thebiogrid.org
http://thebiogrid.org
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Fig. 1 An example of a small protein–protein interaction network created using Cytoscape®. The nodes
(A–F) represent individual proteins, the lines, called edges, represent protein–protein interactions. No infor-
mation about directionality of the interactions is implied. Protein D, for example, represents a protein
connected to E, C, and F by its edges (or links). To compute the Gibbs free energy for node D in this network,
we start with the normalized gene expression data as a surrogate for protein concentration of each node. The
Gibbs free energy for node D would be: normalized gene expression value divided by the sum of normal-
ized expression of node D + the normalized gene expression values of the neighbors (E, F, C). This quotient
becomes the argument for the natural logarithm. The coefficient of the natural logarithm is the normalized
expression value for node D. All of this is summarized in (2)

where ci denotes the concentration of protein i. Since (1) is written as a ratio, we can
replace the concentrations with mole fractions, or even normalized expression, to give the
same chemical potential. This relation is known as the entropy of mixing [26]. The nominal
chemical potentials, represented with either concentration or expression, can be used to
calculate a nominal Gibbs free energy for not only a single protein with its neighbors, but
also for the entire network, for the cell, and the tumor as represented by the transcriptome.

The chemical potential can be used to compute the Gibbs free energy for any protein in
the network as follows:

Gi = ci ln

⎡
⎢⎣ ci∑

j

cj

⎤
⎥⎦ (2)

where the sum is taken over all neighbors and includes the concentration of the protein in
question, ci . In conventional thermodynamics, Gibbs free energy scales the expression to
thermal energy units, and we can drop the usual convention of including the RT coefficient.
Furthermore, because we do not have information on the molar fractions, or molar concen-
trations, we substitute a normalized (rescaled) [0, 1] RNA transcription value in place of the
concentrations, still maintaining the value of the Gibbs energy.

The rescaling of the transcriptome is performed in order to convert it to units of “con-
centration.” The data from TCGA are log-2 normalized and already collapsed to gene
symbols. The log-2 normalization comes about from preprocessing the gene probe data and
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represents the transcription values. These preprocessed data are typically in the range [–10,
10]. To rescale, we find the minimum value of the transcription dataset in question (emin)
and the maximum value (emax). Giving the range these data fall in, the maximum will be
about 10 and the minimum will be about –10. The expression value for each gene in that
transcriptome vector is then processed as: ci = (ei − emin)/(emax − emin).

This rescaling is justified from both a mathematical perspective and a chemical physics
perspective. Negative values in the argument of the natural logarithm are undefined. The
argument from a chemical physics perspective is based on concentrations. If a gene is very
down regulated, it is not producing much protein. We assign the protein concentration to
0 for the gene that is the most down regulated. Whereas a gene that is highly up regulated
will be producing a great deal of protein, the rescaling assigns the gene product that is most
up-regulated, the highest concentration, to a value of 1.

4 Results

Using (1) and (2), we computed the Gibbs free energy for each node in the network as well
as the sum of all nodes, i.e., total Gibbs free energy. The analysis is limited to cancers for
which transcription data existed in the TCGA database. All of the data sets had used the
Agilent® platform, providing a very good gene ID match across all cancers listed in Table 1.
The data, which were already log-2 transformed and collapsed into gene IDs, were averaged
across samples for each gene to create a single expression vector representing the entire set
for each cancer. Table 1 also shows the number of samples, the types of cancers, and the
respective survival rates.

Table 1 Summary table of the number of subjects in TCGA data sets and respective 5-year survival of
individual cancer types from SEER

TCGA Cancer type N Percent Gibbs

Name 5-year survival

KIRC Kidney renal clear cell 72 68 –5687

KRIP Kidney renal papillary cell 16 68 –4944

LGG Low-grade glioma 27 50 –6411

GBM Glioblastoma multiforme 483 2 –5668

BRCA Breast invasive carcinoma 590 88 –6674

UCEC Uterine corpus endometrial 54 84 –6310

OV Serous cystadenocarcinoma 562 45 –6233

COAD Colon adenocarcinoma 174 65 –6099

READ Rectum adenocarcinoma 72 64 –5861

LUAD Lung adenocarcinoma 32 17 –5916

LUSC Lung squamous cell 155 40 –6212

We collected a total of 11 cancers: KIRC (kidney renal clear cell, TCGA 2013b) (1); KIRP (kidney renal
papillary cell); LGG (low-grade glioma); GBM (glioblastoma multiforme, TCGA, 2008); COAD (colon
adenocarcinoma, TCGA 2012a); BRCA (breast invasive carcinoma, TCGA 2012c) (2); LUAD (lung ade-
nocarcinoma); LUSC (lung squamous cell, TCGA 2012b) (3); UCEC (uterine corpus endometrial, TCGA,
2013a) (4); OV (ovarian serous cystadenocarcinoma); READ (rectum adenocarcinoma). Gibbs free energy
included in this table is the average of the respective number for each individual cancer and was computed
using (2)
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Before actually overlaying the expression data on the PPI network, the average expres-
sion vector is rescaled to be in the range [0, 1], effectively setting highly up-regulated gene
expressions to 1 and highly down-regulated gene expressions to 0. A base assumption was
made that previously established correlation that highly up-regulated genes result in a high
protein concentration and highly down-regulated genes result in a very low protein concen-
tration [22, 23]. This prevented any negative argument in the natural logarithm of Eq. (3),
and provided consistency from a chemical physics perspective. The calculated Gibbs values
are shown in Table 1.

A plot of Gibbs free energy values versus percent 5-year survival for these cancers is
shown in Fig. 2. There are nine cancers shown in the graph (GBM, LUAD, LUSC, READ,
COAD, OV, LGG, UCEC, BRCA) with Pearson r correlation of –0.7181, and p value of
0.0294. The Spearman correlation is –0.633 with a p value of 0.0671. The Kendall tau test
correlation is –0.555 with a p value of 0.0371. These statistics do not include KRIC (“kidney
renal clear cell”) and KRIP (“kidney renal papillary cell”) abnormal tissue growths, which,
even though highly proliferative and destructive, are of questionable malignant potential.
If one were to include these two abnormal growths (KRIC and KIRP) in the analysis, the
correlation would drop to –0.016.

For comparisons, we used another measure of the expression data versus survival. We
calculated singular values using numpy.lanalg.svd(X) in Python and compared them to sur-
vival. The first three singular values versus survival gave r correlations of –0.070, +0.115,
+0.176, respectively (leaving out KIRC, KRIP). These are very poor correlations, and it is
reasonable to conclude that Gibbs free energy is more effective in evaluating a real effect on
survival, because it is associated with significant changes in energy of a signaling protein
network in a cancer cell. An important implication of the correlation between Gibbs free
energy and survival is that the higher the Gibbs free energy absolute value of a given can-
cer type, the more robust it is against external perturbations and the lower the probability of
patient survival over a 5-year period. This is consistent with other concepts in physics where
Gibbs free energy is a measure of stability of a thermodynamic system. Gibbs free energy
and entropy are both thermodynamic measures, and because the observations are similar,
we can compare the two thermodynamic measures. Physical systems in equilibrium have a
statistical tendency to reach states of maximum entropy (when thermally isolated) or mini-
mum Gibbs free energy (when kept at a constant ambient temperature). Although biological
systems are open and far from thermodynamic equilibrium, we expect some aspects of their
behavior to be driven by tendencies dictated by thermodynamics or thermodynamic-like
considerations. In this paper, we show that reaching a Gibbs free energy minimum for the
PPI aspect of cancer cell dynamical interactions is akin to a principle of maximum entropy
(second law of thermodynamics).

As noted in the Introduction, the degree distribution used by Breitkreutz et al. [7] is
essentially a Boltzmann distribution. This allows us to compare entropy with Gibbs free
energy. The empirical equation for the linear fit of the Gibbs free energy with survival
without kidney cancer is G = 8.112σ + 5753.9 (Fig. 2). Using the data from Breitkreutz
et al. [7], we can write the empirical equation for the liner fit of entropy as S = −0.0087σ +
2.2731 . Solving both of these equations for 5-year survival probability, σ , and equating,
we find an empirical relationship between the PPI entropy and Gibbs free energy for cancer
cells, namely G = 7873 − 932S. Note that in order to relate G and S, we used the absolute
value of the Gibbs free energy. This is consistent with the fundamental thermodynamic
relationship linking Gibbs free energy and entropy: G = H − T S. What remains to be
analyzed in the future as more data sets become available is the nature of the proportionality
constant playing the role of the absolute temperature, the character of which may either be a
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Fig. 2 Gibbs free energy and the probability of 5-year survival. Data from the TCGA gene list were overlaid
on BioGRID® in order to merge protein–protein interaction network data with transcription data using (2).
As evident, Gibbs free energy can be correlated with 5-year survival with an r coefficient of –0.72. We have
excluded KIRC and KIRP because the biology of neuroectodermal and epithelial cancers differ from KIRC
and KIRP. The inclusion of KIRC and KRIP in the calculation decreased correlation to –0.21

biological constant of fundamental importance or simply a fitting parameter. It is tantalizing
to speculate that a fundamental biological constant similar to temperature exists. This has
already been postulated in the context of metabolism in physiology where a formal analogy
was made by Demetrius between temperature and cycle time for the turnover of metabolic
biochemical reactions [27].

5 Discussion

Among other features, cancers can be viewed as severely mutated cells. The PPI networks
we used do not consider mutations. In future analysis, we would expect to be able to include
PPI networks that incorporate gene fusion protein products—the result of mutations. This
would enhance the analysis considerably.

As information about cancer-related genomic alterations emerge and more and more
data becomes available, we can begin to establish the relationships between protein–protein
interaction network complexity and cancer progression. We provide Gibbs free energy, a
thermodynamic measure encompassing both network complexity and protein concentration
(transcriptome), and show that thermodynamics can be correlated with cancer survival. This
allows us to potentially differentiate between normal and cancer cells using thermodynamic
measures.

We have shown that there is no correlation between the singular values of the expression
and survival, and pointed out that the first three singular values (leaving out kidney) versus
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survival gave r correlations of –0.070, +0.115, +0.176. This suggests that the expression
data is not the most significant component for the analysis and that the PPI network must be
playing a significant part. To establish that the network architecture itself does not account
for the correlation of Gibbs free energy and survival either, we tested a random network.
One can view the mathematical steps in (1, 2) as follows:

The symbol qG represent a quasi-Gibbs free energy, the symbol ξ represent the expres-
sion vector and the little network symbol represents the PPI network. This is analogous to a
vector, vector-like product producing a scalar (vector dot product). In these calculations, the
network architecture is fixed for all expression vectors, for all cancers. To evaluate whether
the architecture of the network itself may play a role, we used random networks, or, more
specifically, random perceptrons [28], and found the dot product for each expression vector
with this perceptron network. We computed the indicated dot product, and found that these
random networks did not correlate with survival (r = 0.094). Thus, the expression data
and the PPI network are both needed for a meaningful Gibbs free energy. In effect, the PPI
network provides a structure to the expression data.

It is worth mentioning that our approach to describe and quantify cancer cell networks
in terms of statistical thermodynamics is deeply rooted in the methodology relevant to
the cascades of biochemical reactions linking it to bioenergetics [29]. In fact, we may be
representing only some aspects of the cancer cell’s complexity, namely the topology of
the signaling networks, protein expression levels, and protein–protein affinities. Cellular
metabolism may well be an additional aspect that needs future integration [30], provided
sufficient empirical data can be obtained. Moreover, as shown in [31], a complete pic-
ture may require the incorporation of time-dependence. Interestingly, the time scales of
biochemical reaction rates also differ between cancer and normal cells [31].

6 Data sources and methods

Data for several cancers from The Cancer Genome Atlas (TCGA) hosted by the National
Institute of Health (http://cancergnome.nih.gov) were collected. The Cancer Genome Atlas
is described by the TCGA-Research Network [32]. More specifically, we collected a set of
data that used the Agilent platform G4502A and was pre-collapsed on gene symbols. We
collected a total of 11 cancers: KIRC (kidney renal clear cell, TCGA 2013b) [33]; KIRP
(kidney renal papillary cell); LGG (low-grade glioma); GBM (glioblastoma multiforme,
TCGA), [34]; COAD (colon adenocarcinoma, TCGA 2012a) [35]; BRCA (breast invasive
carcinoma, TCGA 2012c) [36]; LUAD (lung adenocarcinoma); LUSC (lung squamous cell,
TCGA 2012b) [37]; UCEC (uterine corpus endometrial, TCGA, 2013a) [38]; OV (ovarian
serous cystadenocarcinoma); READ (rectum adenocarcinoma).

We used the human protein–protein interaction network (Homo sapiens, 3.3.99, March,
2013) from BioGrid, which contains 9561 nodes and 43,086 edges. BioGrid (http://
thebiogrid.org) [39, 40]. The entire human PPI was loaded into Cytoscape (version 2.8.1)
[41]. The list of genes obtained from TCGA (full-length expression set was 17,814 genes)
for a specific cancer was “selected” using the Cytoscape functions, the “inverse selection”
of Cytoscape function applied, and the nodes and their edges were removed. The resulting
network, which now included only those genes found in both Biogrid and TCGA, consisted

http://cancergnome.nih.gov
http://thebiogrid.org
http://thebiogrid.org
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of 7951 nodes and 36,509 edges. This Cytoscape network was unloaded as an adjacency
list for processing by custom Python code using Python (2.6.4) with appropriate NetworkX
functions.

We used two databases for survival data: The Surveillance Epidemiology and End
Results (SEER) National Cancer Institute database, which contains detailed statistical infor-
mation about the 5-year survival rates of patients with cancer, and the National Brain Tumor
Society database.
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