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A B S T R A C T

The administration of chemotherapy at reduced doses given at regular, frequent time intervals, termed
‘metronomic’ chemotherapy, presents an alternative to standard maximal tolerated dose (MTD) chemo-
therapy. The primary target of metronomic chemotherapy was originally identified as endothelial cells
supporting the tumor vasculature, and not the tumor cells themselves, consistent with the emerging concept
of cancer as a systemic disease involving both tumor cells and their microenvironment. While anti-
angiogenesis is an important mechanism of action of metronomic chemotherapy, other mechanisms,
including activation of anti-tumor immunity and a decrease in acquired therapeutic resistance, have also
been identified. Here we present evidence supporting a mechanistic explanation for the improved ac-
tivity of cancer chemotherapy when administered on a metronomic, rather than an MTD schedule and
discuss the implications of these findings for further translation into the clinic.

© 2014 Elsevier Ireland Ltd. All rights reserved.

Introduction

Standard clinical protocols for cancer chemotherapy typically
employ the maximal drug dose that can be tolerated by the patient.
This, in turn, necessitates prolonged time intervals between treat-
ment cycles to allow for normal tissue recovery from the cytotoxic
assault, which are ideally designed to maximize tumor cell kill
without lethal damage to the patient. This concept of maximum tol-
erated dose (MTD) chemotherapy derives from the success of treating
acute lymphoblastic leukemia (ALL) in children [1]. Childhood ALL
is highly responsive to MTD chemotherapy primarily because it
represents a rare instance when the leukemic tumor clone can be
completely eradicated. This is not always possible in other, more
genetically complex leukemias, such as bcr-abl and MLL-positive leu-
kemias, where this treatment strategy has not been as successful
[2]. Cancers in which MTD chemotherapy has proven to be suc-
cessful rarely have a complex network of activating mutations, and
include gestational choriocarcinomas [3,4], testicular cancer [5],
certain germ-cell tumors [4], Hodgkin disease [6] and B-cell non-
Hodgkin lymphomas [7,8]. In contrast, complex cancers, such as
sarcomas, breast, prostate, pancreas and lung cancers, are less

effectively treated by upfront tumor cell eradication using MTD doses,
primarily because these cancers engage the host microenviron-
ment extensively [9–13].

In addition to its high toxicity and detrimental effects on the pa-
tients’ quality of life, MTD chemotherapy is often followed by the
development of therapeutic resistance. Particularly in the case of solid
tumors, MTD chemotherapy kills off chemotherapy-sensitive cancer
cell populations, leaving chemoresistant cells behind to re-colonize
the tumor bed, ultimately leading to disease relapse. One strategy
to prevent disease relapse has been to develop increasingly intense
and thus more toxic drug regimens, including combination chemo-
therapy regimens, in the hope of achieving more complete a priori
eradication of all cancer cells [13], subscribing to the philosophy of
“more must be better”. However, recent advances in tumor biology
point away from focusing on the cytotoxicity of drugs and toward
modification of the biology of the tumor using targeted approaches
that disengage the tumor microenvironment. This latter approach re-
defines the therapeutic goals to aim for prolonged responses rather
than the short-term tumor regression responses, which do not
necessarily translate into an increase in long-term patient survival.

In contrast to MTD drug regimens, metronomic chemotherapy
is characterized by the administration of a cytotoxic agent at a lower,
less toxic dose given at regular, more frequent time intervals. A
review of clinical trials comparing the effectiveness of metro-
nomic chemotherapy to MTD chemotherapy [12,14–17] indicates
a growing appreciation of the concept. This trend is also evident
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at www.clinicaltrials.gov, which currently lists over 150 clinical trials
of metronomic chemotherapy for various cancers. Of particular in-
terest are results of the CAIRO3 clinical trial [18], which reported
highly encouraging results of metronomic maintenance treat-
ment in metastatic colorectal cancer patients. Many more clinical
trials using metronomic chemotherapy in combination with mo-
lecular agents are ongoing and were recently reviewed [15]. The
growing popularity of metronomic chemotherapy reflects the
common finding that combining standard chemotherapeutic
regimens with non-traditional agents, such as anti-angiogenic drugs,
proteasome inhibitors and anti-inflammatory agents, while increas-
ing the response rate, may also increase host toxicity beyond the
tolerable level. Metronomic chemotherapy has the potential to
preserve efficacy while avoiding the increase in toxicity common-
ly seen when biologic response modifiers are used.

While metronomic chemotherapy may have been extensively re-
viewed in the literature and its multiple mechanisms of actions have
been well debated [11,14,17,19–22], for most clinicians, metro-
nomic chemotherapy remains a mostly palliative care tool rather
than active, upfront therapy. This categorization of metronomic che-
motherapy as palliative tool leads to a disregard of its synergism
when used in combination with targeted biological agents and in-
frequent use in active treatment. By reviewing the mechanisms of
action of metronomic chemotherapy in this paper in detail, we show
the benefits of preferentially using low-dose frequent chemother-
apy in facilitating the recent shift in clinical oncology from cytotoxic
therapies to molecularly based agents. Furthermore, during the recent
Fourth Metronomic and Anti-Angiogenic Therapy Meeting (June
2014) one of the main topics of discussion was the “lack of a clear
understanding of the exact mechanisms of action, optimal dosages
and most efficacious metronomic schedules” [15]. In what follows,
we present how changing both the timing and the dosage of che-
motherapy, metronomic treatment regimens can effectively address
other primary drawbacks of MTD, namely, the development of ther-
apeutic resistance and suppression of anti-tumor immune responses.
The argument is supported by the recognition that cancer is a disease
not solely of cancer cells, but also of the tumor microenviron-
ment, a point increasingly accepted in the scientific literature [23,24].

Cancer as a disease of both tumor cells and their microenvironment

Genetically complex tumors grow and develop within a dynamic
microenvironment derived from the host’s tissues. From this per-
spective, it may be useful to think of tumor cells as parasites that
are hosted by tumor-associated endothelial cells (TECs) and stromal
cells, including fibroblasts, pericytes, inflammatory cells, and immune
cells, all coexisting within the larger “ecosystem” of the human body.
Just as in other ecosystems, the survival of the parasitic tumor cells
primarily depends not on the state of the entire ecosystem, but on
the state of their local host, in this case the tumor microenviron-
ment. Experience with anti-parasitic treatments has shown that
effective eradication strategies require high doses of toxic chemi-
cals, however, such doses cannot be reached because of unacceptable
damage to the host. Furthermore, parasites often develop drug
resistance resulting in decreased efficacy in subsequent rounds of
therapy [25]. These same obstacles are encountered in cancer
treatment [26,27], reinforcing the concept that increased toxicity
to the target tumor cell does not equate with an overall increase
in efficacy. Attacking ‘the immediate host’, i.e., TECs and other cells
within the tumor microenvironment might in fact prove to be a more
successful long-term strategy.

Tumor microenvironment and endothelial cells as targets

To better understand how the tumor microenvironment becomes
engaged and modified by malignant disease, one first needs to

understand the functionality of the various components of normal
tissues. Most tissues reach a level of dynamic equilibrium under
normal conditions, and the local microenvironment can be thought
of as a dynamic community composed of a multitude of cells of dif-
ferent lineages and functions, including resident cells and responders
[28]. Resident tissue cells include supportive cells, such as fibro-
blasts, pericytes, astrocytes, and health surveillance cells, such as
histiocytes, macrophages and lymphocytes. The resident cells provide
support to the tissue, while the responders ensure tissue mainte-
nance and protection. Responders are recruited to the tissue site
in times of acute need, and can be further subdivided into primary
(early) responders, such as platelets, lymphocytes and neutro-
phils, and secondary responders, such as hematopoietic progenitor
cells and monocytes. Both primary and secondary responders are
summoned when local health surveillance cells are unable to
contain the damage, resulting in recruitment of specialized cells of
the adaptive immune response to aid the innate immune cells, or
when there is a need to repair tissue damage (Figure 1).

In response to wounding, endothelial cells and fibroblasts send
out pro-angiogenic signals that initiate formation of new blood
vessels and stimulate tissue repair. This process is largely medi-
ated by coagulation factors and by platelets, which actively sequester
growth factors critical for blood vessel formation, including VEGF,
bFGF, PDGF, TSP-1, and PF-4 [29]. Contrary to the widely-held view
that platelets release angiogenesis regulators en mass, it is now
understood that platelet clots retain angiogenesis regulators and
create reciprocally interactive concentration gradients of pro- and
anti-angiogenic growth factors [29,30]. The process of angiogen-
esis is regulated by the creation of sequential concentration gradients
in tissues. More specifically, growth factors such as VEGF initiate
formation of sprouts [31], while others, such as bFGF, provide signals
for endothelial cell proliferation and tube formation [32–34],
followed by vessel stabilization by PDGF and eventually collagen
cleavage and vessel pruning, mediated by such stabilizing and
angiogenesis inhibiting factors such as TSP-1 and PF-4 [35,36]. Thus,
under normal physiological conditions, angiogenesis is largely limited
to wound healing and placental development. In the tumor mi-
croenvironment, however, oncogenic stimulators, such as RAS, c-myc,
and EGFR, overcome this inhibition of angiogenesis [37–39], leading
to unrestrained release of angiogenesis-promoting signals. This
results in continuous formation of new blood vessels that feed the
tumor and further contribute to tumor growth, making angiogen-
esis an important therapeutic target in cancer.

An important distinction needs to be made between the anti-
angiogenic effects of conventional anti-angiogenic drugs, which target
individual molecules or signaling pathways, and the anti-angiogenic
actions of metronomic chemotherapy, which inhibit the produc-
tion of growth factors at the source. For instance, bevacizumab, an
anti-angiogenic monoclonal antibody, binds to extracellular VEGF,
rendering it incapable of activating cell surface VEGF receptors and
thus incapable of initiating sprout formation [40]. In contrast, met-
ronomic chemotherapy damages the source of these growth factors,
namely, fibroblasts and TECs [41–43]. Therefore, while metro-
nomic chemotherapy and anti-angiogenic drugs can both induce anti-
angiogenesis, the underlying mechanisms are different, with
metronomic therapy potentially having more lasting effects due to
its targeting the source of vascular growth factors rather than the
growth factors themselves.

There are important differences between TECs and normal en-
dothelial cells [44]. TECs, especially those from highly metastatic
tumors, have more proangiogenic counterpart than TECs from less
metastatic tumors or normal endothelial cells. The quiescence of
normal endothelial cells is a well-documented finding and repre-
sents the basis of higher intrinsic sensitivity of TECs to cytotoxic
drugs. In some cases TECs lose functionality when exposed to cancer
chemotherapeutic agents at much lower concentrations than those

101I. Kareva et al./Cancer Letters 358 (2015) 100–106



needed to cause tumor cell damage. Picomolar to nanomolar con-
centrations of therapeutic agents such as vinblastine [45], taxol [46],
carboplatinum [47] and adriamycin [47] show intrinsic toxicities
to TECs, whereas much higher doses – typically nanomolar to
micromolar levels – of the same agents are required for tumor cell
toxicity.

Lower dosages can decrease the rate of acquired
therapeutic resistance

The use of lower dosages of cytotoxic drugs for attacking TECs
and other supporting cells in the tumor microenvironment can have
the added benefit of minimizing the induction of acquired thera-
peutic resistance [47,48], particularly in the setting of combination
therapy. Tumors are characterized by high levels of both geno-
typic and phenotypic intratumoral heterogeneity, and as a
consequence, most tumors are likely to contain one or even mul-
tiple cancer cell clones that are resistant to even the highest doses
of cytotoxic drugs that can be given to a patient. High doses of
cytotoxic chemotherapy (i.e., MTD chemotherapy) impose severe
selective pressure on a heterogeneous tumor population, thereby
killing drug-sensitive tumor cell clones and leading to the selec-
tion of the most drug-resistant clones [49,50].

Consider the schematic dose–response graphs for killing tumor
cells and for TECs presented in Figure 2. With some anticancer agents,
the minimal dose needed to inflict significant damage to TECs is so
low that tumor cells are spared. All tumor cells depend on TECs and
on the stromal compartment for pro-angiogenic signals that recruit
the blood vessels needed to access oxygen and nutrients [51,52],
and as consequence, chemotherapeutic drug doses and schedules
that selectively target these and other critical cells within the tumor
microenvironment can inflict severe damage on both resistant
and sensitive tumor cell clones. This weakens the entire tumor cell
population without specifically selecting for resistant clones. In
some cases the combination of metronomic chemotherapy with
anti-angiogenic therapy yields a superior outcome [42,53,54].
Low-dose chemotherapy damages TECs, while the direct acting an-
giogenesis inhibitors interfere with TEC survival signals, preventing

regrowth of new blood vessels. TECs may acquire therapeutic re-
sistance [55], but the mechanisms of TEC resistance are different
than the mechanisms of tumor cell resistance, indicating a need for
multi-targeted approaches.

One of the primary arguments against administering low dose
chemotherapy is based on the experience with infectious diseases
and antibiotics, where low (inadequate) drug doses lead to selec-
tion for antibiotic-resistant superbugs [56]. However, this concept
is not applicable to low-dose metronomic chemotherapy. Whereas
antibiotics still act on the bacteria themselves when given at low
dosages, low dose chemotherapy primarily affects the stromal cells
on which the tumor cells rely for support and sustenance. There-
fore, the mechanisms that account for the increased resistance of

Fig. 1. Role of the tumor microenvironment during tumor progression. Therapeutically resistant tumors engage their microenvironment as cancer cells recruit normal tissue
cells, such as fibroblasts, pericytes, histiocytes, platelets and hematopoetic progenitor cells. Through engagement and modification of their microenvironment, cancer cells
‘simulate’ the conditions of a wound, evoking normal physiological responses such as new blood vessel formation without allowing for angiogenesis termination.

Fig. 2. Dose–response curves for cancer cells and tumor endothelial cells (TECs). The
dosage of therapeutic agents that achieve maximal cell kill of TECs can be orders
of magnitude lower than the dosage necessary to inflict significant damage on cancer
cells. Therefore, damaging tumor-supporting endothelial cells may inflict equal damage
on all tumor cells, effectively preventing selection for resistant cell clones.
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bacteria treated with low dose antibiotics are largely not applica-
ble to cancer chemotherapy.

Metronomic chemotherapy and cancer stem cells (CSCs)

Another important question concerns the effect of metronomic
chemotherapy on cancer stem-like cells (CSCs), i.e. tumor-initiating
cells, which are often intrinsically resistant to classic anticancer drugs.
In a study of subcutaneous rat C6 gliomas, metronomic chemo-
therapy in combination with direct anti-angiogenic drug treatment,
but not several other treatment regimens, was effective at reduc-
ing the CSC population [57]. Further, neither targeted anti-angiogenic
therapy nor cytotoxic chemotherapy alone reduced the fraction of
CSCs. Furthermore, others found that an MTD regimen followed by
metronomic chemotherapy (a chemo-switch schedule) was more
effective in blocking metastatic dissemination in an orthotopic pan-
creatic adenocarcinoma model compared to MTD treatment [58].
An increase in TSP-1 expression and a decrease in the number of
CSCs bearing CD133+ and CD133+/CD44+/CD24+ markers were also
seen, indicating that a cytoreductive MTD regimen followed by met-
ronomic chemotherapy may be a promising strategy for eradicating
chemotherapy-resistant CSCs.

More frequent timing can activate the immune system

Both innate and adaptive immune responses play an impor-
tant role in keeping cancer progression in check. These responses
can be compromised by high dose chemotherapy, which triggers
host inflammatory immune response [59] and ablates immune sur-
veillance [60]. However, these deleterious effects on the patient’s
immune system can be managed through changes in both dosage
and timing of chemotherapy, which can lead to stimulation of anti-
tumor immunity and suppression of pro-tumor immune responses.

Low-dose chemotherapy can reduce immune suppressive popu-
lations of CD4+CD25+ regulatory T cells (Tregs) [61–63]. However,
metronomic administration of chemotherapeutic drugs can also have
effects on other subsets of immune cells. For instance, changing the
dosage of commonly used chemotherapeutic drugs can affect antigen
presenting cells, such as dendritic cells (DCs), which are crucial for
activation of adaptive immune responses [64]. In one study, Tanaka
and colleagues [65] evaluated and classified chemotherapeutic agents
with respect to their effect on DCs and identified a class of drugs
that induced DC maturation. Specifically, vinblastine, which is highly
suppressive of anti-tumor immunity at high concentrations, pro-
moted maturation of DCs at low concentrations, as indicated by the
increased expression of markers such as MHC-II, CD40, CD80 and
CD86. In another study [64], vinblastine increased the activity of
cytotoxic lymphocytes against mouse B16 melanoma targets, in-
terfering with the otherwise progressive growth of B16 melanoma.
Low doses of chemotherapeutic agents also affect myeloid-derived
suppressor cells, alleviating suppression of adaptive immune re-
sponses and allowing for improved anti-tumor [66]. An extensive
review of the effects of specific chemotherapeutic agents on a variety
of immune cell subsets has been published [67].

With respect to innate immune responses, Doloff and Waxman
[68] demonstrated that dramatic regression of implanted brain tumor
xenografts treated with cyclophosphamide on an intermittent, every
6 day metronomic schedule (Q6day cycle) was accompanied by
significant recruitment and activation of innate immune cells, spe-
cifically, natural killer (NK) cells, dendritic cells and macrophages.
Notably, these responses were achieved with little or no anti-
angiogenesis. Selective depletion of NK cells using anti-asialo-
GM1 antibody resulted in delayed and incomplete tumor regression,
which were both reversed following termination of asialo-GM1 an-
tibody treatment. The efficacy of the Q6day cycle was hypothesized
to reflect the life span of NK cells and perhaps other first-line

immune responder cells. More frequent administration of cyto-
toxic therapy was ineffective in these brain tumor models, where
it may interfere with the immune-stimulating effects of the every
6-day metronomic regimen by inflicting severe damage to the NK
cells themselves [69,70]. Thus, the timing of metronomic chemo-
therapy appears to be critical: it needs to be sufficiently frequent
to activate a strong innate anti-tumor immune response, but it also
needs to be sufficiently well-spaced in time to minimize damage
to the immune cells recruited to the tumor microenvironment.
Further, longer intervals between metronomic drug treatments
(cyclophosphamide given every 9 or every 12 days, instead of every
6 days) and drug doses that are too low can both lead to tumor
escape [70], highlighting the importance of regular, repeated drug
treatment for an effective innate anti-tumor response. Other studies
show that VEGFR2 signaling is essential for metronomic cyclophos-
phamide to stimulate robust innate immune cell recruitment [71].
See Figure 3B. Moreover, anti-angiogenic drugs that primarily act
by a VEGFR2-independent mechanism do not interfere with innate
immune cell recruitment, indicating that the interference with
immune cell recruitment is not due to the loss of the tumor vas-
culature [71]. Avoiding damage to the immune surveillance system
might be of crucial importance if the growth of a particular tumor
type is dependent on its ability to evade anti-tumor immunity. This
contention is supported by Young et al. [72], who suggested
that in a clinical setting, optimization of exact dosage and timing
may need to be adjusted with respect to the patient’s immune
response and the type of tumor.

Not all tumors respond to the above intermittent, every 6-day
metronomic schedule of cyclophosphamide with NK cell recruit-
ment leading to tumor regression, as seen in a KM12 colon carcinoma
model [73]. This may reflect the fact that NK cells are rare in human
colorectal carcinoma tissues, even in the presence of high levels of
chemokines that activate and recruit these cells, with the capacity
for NK cell migration into colorectal carcinoma being impaired early
during colorectal carcinoma development [74]. The impact of changes
in dose and schedule of metronomic chemotherapy on the innate
immune response is presented in Figure 3.

Clinical implications and future directions

Metronomic administration of cancer chemotherapeutic drugs
holds much promise to address several of the major drawbacks of
MTD regimens. These include the emergence of drug resistance, sup-
pression of anti-tumor immunity, toxicity and poor quality of life
during therapy. Further, metronomic chemotherapy lowers the fi-
nancial burden for the patient when compared to targeted therapies
[75], while maintaining efficacy. Unfortunately, the time lag between
anti-tumor effect and a visible reduction in tumor bulk may in some
cases decrease the utility of metronomic chemotherapy for ad-
vanced disease. For example, in the care of brain stem glioma, even
minimal progression can be lethal to the patient, calling for more
drastic intervention with immediate tumor bulk reduction such as
surgery or radiation. Similarly, treatment protocols for ALL include
a period of high-intensity induction, followed by a milder dose con-
solidation, followed by 2–3 years of lower-dose, higher-frequency
maintenance therapy [76]. This strategy gives 90–95% survival rates,
and any attempts to omit the maintenance therapy yield inferior
results [77–79]. Choi et al. [80] reported encouraging results for a
small group of children with tumors of central nervous system
treated with up-front high-dose chemotherapy, followed by met-
ronomic maintenance therapy. In that study, 8 of the 10 patients,
including six with metastatic disease, continued to have stable clin-
ical and radiographic disease 20 months from the time of diagnosis.
Encouraging results were also reported when using metronomic
therapy for children with medulloblastoma, with over 65% surviv-
al rates after 24 months [78], warranting further investigation.
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In summary, although the long-standing goal of MTD chemo-
therapy has been immediate tumor shrinkage, an immediate anti-
tumor response that leads to recurrence of disease does not improve
patient outcomes. Further, as illustrated in Figure 4, while the anti-
tumor responses to metronomic chemotherapy may be delayed, e.g.,
due to the time required to ablate tumor blood vessels or activate
an anti-tumor immune response, the anti-tumor response is more

likely to be sustained [11,42], owing to the decreased selection of
resistant tumor cell clones and the suppression of anti-tumor
immunity with a decreased likelihood of disease relapse.

More widespread adoption of metronomic chemotherapy as a
main upfront therapeutic modality will require improved ways to
measure therapeutic efficacy, including the identification of
biomarkers that can be used to evaluate therapeutic effectiveness.
Such biomarkers may already exist, and include cancer antigens CA
15-3 and CA 19-9, prostate-specific antigen, platelet biomarkers
[29,81–84], serum VEGF and other angiogenic cytokines [85], plasma
levels of PDGF-BB [86], thrombospondin-1 expression [87], VEGF
SNPs [88] and CD133 gene expression [89], and various immune re-
sponse genes [90]. There is also an effort to monitor tumor response
using ratios of angiogenesis regulators [91]. Further work is needed
however to establish the utility of these biomarkers compared to
the old paradigm of measuring the effectiveness of MTD chemo-
therapy by the degree of myelosuppression or tumor shrinkage.

It remains to be determined whether metronomic chemother-
apy will ultimately be more effective than MTD-based therapies in
the treatment of metastatic disease, although early indicators suggest
this may be the case [92–97]. The introduction and increased use
of computational models to assist with identification of patient-
specific optimal dosage and timing protocols will also facilitate the
implementation of metronomic chemotherapy in the clinic [98]. The
body of experimental and clinical evidence, coupled with theoret-
ical considerations, outlined earlier, point to metronomic
chemotherapy as a preferred course of action.
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