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The Role of Platelets in Tumour Growth

Úloha krevních destiček v rozvoji nádoru
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Summary
Platelets, as initial responders to vascular injury, play a very important role in the initial stages 
of the haemostatic process. While the role of platelets in coagulation has been well studied 
and documented, their role in other physiological and pathological processes is just emerging. 
Platelets contain many biologically active molecules and, as they adhere to sites of tumour 
activated or injured endothelium, many of these molecules are released into the local microen­
vironment leading to platelet-mediated effects on vascular tone, repair and neo-angiogenesis. 
Platelets are likely play important roles in the tumour microenvironment that may be thought 
of as “a wound that never heals”.

Key words
blood platelets – angiogenesis – wound healing – tumour growth – neoplasm metastasis

Souhrn
Krevní destičky jako elementy odpovídající v první vlně na poškození cév hrají velmi význam­
nou úlohu v počátečních fázích procesu hemostázy. Zatímco zapojení trombocytů v procesu 
koagulace je podrobně studováno a popsáno, jejich role v dalších fyziologických a patologic­
kých procesech teprve začíná být předmětem zájmu. Krevní destičky obsahují řadu biologicky 
aktivních molekul a s tím, jak trombocyty adherují na nádorem aktivovaný nebo poškozený en­
dotel, je řada těchto molekul uvolňována do nádorového mikroprostředí, což vede k ovlivnění 
cévního tonu, reparaci cévy a neoangiogenezi. Destičky pravděpodobně hrají důležitou úlohu 
v mikroprostředí nádoru, který můžeme považovat za ránu, která se nehojí.
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The Hypercoagulable State 
Associated with Malignancy
Numerous clinical and basic science 
studies corroborate the importance of 
thrombosis in cancer development [1–7],  
cancer progression  [8–12], and cancer 
metastasis [8,13–18]. The association is 
so well known that a deep vein throm­
bosis (DVT) in a  patient without ob­
vious risk factors triggers a  search for 
an occult cancer. Despite this appreci­
ation of a link between DVT and malig­
nancy  [19–21], the underlying biology 
has not been well characterised. The 
propensity to develop thromboembo­
lic disease varies with the type of can­
cer [22], suggesting tumour cell-specific 
or tumour microenvironment-specific 
pathways to platelet and fibrin aggre­
gation in tumours. Furthermore in some 
tumours, such as neuroblastoma, high 
platelet counts are associated with good 
prognosis [23], whereas in others (lung, 
colon, cervical, and breast cancers), the 
finding of high platelet counts implies 
poor prognosis [24–26].

Even though the association of hy­
percoagulability in cancer was first do­
cumented by Trousseau in 1865  [27], 
much work remains before we can use 
this finding therapeutically. There are 
some encouraging clinical observations. 
For example, the use of anticoagulants 
provides cancer patients with a  sur­
vival advantage over and above that 
which would be conferred by the treat­
ment of the DVT alone  [28–35]. Unfor­
tunately, large studies of the use of an­
ticoagulants in the cancer population 
have not led to any significant change 
in the present management of cancer  
patients_ENREF_194 [36]. Yet both clini­
cians and basic scientists appreciate that 
even in patients not presenting with 
a  cancer-associated thrombosis, the 
coagulation system is activated and pla­
telet turnover increased. The interplay 
between platelets, coagulation and can­
cer is yet to be fully explored.

The Role of Platelet in 
Angiogenesis
The first scientific evidence suggesting 
that platelets were necessary for vas­
cular integrity was reported in the late 
1960‘s  [37]. Organs perfused with pla­

telet poor plasma led to loss of integrity 
of the endothelial cell layer and haemor­
rhages, and this effect could be rever­
sed by addition of platelets. Similarly, 
thrombocytopenia was associated with 
increase in vascular permeability due to 
large endothelial wall fenestrations (EC)  
[38,39]. Based on these and other stu­
dies platelets were thought to pro­
mote endothelial cell growth [40], even 
though the mechanism of this trophic 
effect was unclear.

Platelets contain three types of gra­
nules: α-granules, dense granules and 
lysosomes, but most angiogenesis re­
lated proteins are contained in α-gra­
nules  [41,42]. Tab.  1 lists angiogenesis 
regulators found in platelets. The pre­
sence of proteins with opposing angio­
genic functions in platelets suggests 
that platelets are mediators and their 
presence can result in different actions 
depending on the situation. The forma­
tion of a clot not only provides a matrix 
facilitating cell migration, but also leads 
to a very judicial release of either stimu­
lators or inhibitors of growth. As plate­
lets adhere to activated endothelia or 
to exposed vascular sub-endothelia, 
the reciprocal interactions between the 
cells lead to sequential release of angio­
genesis regulators. Platelets in this way 
serve as potent activators as well as in­
hibitors of important tissue repair pro­
cesses such as inflammation  [43] and 
angiogenesis [44].

Platelets in Tumour Angiogenesis
A tumour is a community of cells. There 
are resident cells (fibroblasts, histiocy­
tes, epithelial and mesenchymal cells) 
that form the tissues, and cells that are 
recruited to the site in time of injury or 
malignant growth (mesenchymal proge­
nitors and inflammatory cells). Platelets 
are mediators of this community.

Primary tumour growth is faci­
litated by inflammation and an­
giogenesis not unlike physio ­
logical wound healing  [86–88].  
However, in cancer, the normal physio­
logical processes of dialing-down an­
giogenesis as scar tissue develops is 
prevented by the continuous, onco­
gene-mediated induction of tumour 
angiogenesis  [89–92]. It has been well 

described that tumour vasculature is 
immature, unstable and morphologi­
cally different from the normal systemic 
vasculature. While tumour vasculature is 
often thought of as abnormal, it is bet­
ter conceptualised as an unpruned, un­
derdeveloped precursor of mature ves­
sels – a continuously expanding, but not 
maturing, vascular bed.

Platelets play an important role in mo­
dulating tumour dynamics. A large body 
of evidence spanning at least four deca­
des supports the involvement of plate­
lets in cancer [1,2,13]. The process of se­
questration of angiogenesis regulators 
in platelets is an active and highly sele­
ctive process [41]. An open-ended pro­
teomic comparison of platelets from 
mice bearing dormant or fast-growing 
liposarcoma xenografts revealed sig­
nificant differences in protein profi­
les between each of these tumour sub­
types  [41,93,94], as well as differences 
when platelets of mice bearing either 
of the tumour types were compared to 
platelets of non-tumour-bearing sham- 
-operated controls. Despite the open-
-ended analysis of all proteins present 
in platelets, the majority of proteins 
differentially expressed in platelets of 
tumour-bearing animals and cancer pa­
tients were found to be angiogenesis re­
gulators such as VEGF, bFGF, PDGF, PF4, 
TSP1, MMP9, endostatin, angiopoietin-1 
and -2, etc. While the membership in 
this “platelet angiogenesis proteome”, as 
well as the concentrations of individual 
protein members, is fairly stable under 
physiological conditions  [45], it is alte­
red very early in tumour growth [41,93]. 
The sequestration of angiogenesis regu­
lators in platelets is: i) active because it 
occurs against a concentration gradient 
in plasma and ii) highly selective for an­
giogenesis regulators, as other very 
abundant proteins, e.g. albumin or fib­
rinogen, are not taken up by platelets 
against a concentration gradient. Inte­
restingly, the sequestration of angioge­
nesis regulators in platelets occurs very 
early in primary tumour growth [93]. At 
a time when tumours are not detectable 
by conventional methods, and long be­
fore the tumour burden results in chan­
ges in the levels of angiogenesis re­
gulators in plasma or serum, there are 
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Tab. 1. Summary of pro- and antiangiogenic actions of platelet cytokines and factors.

ANGIOGENESIS STIMULATORS
Factor Platelet concentration Mechanism of action Ref.
VEGF (all isoforms, 
mainly VEGF-A, -B)

0.74 ± 0.37 pg/106 PLT Promotes permeability of the vessel wall and serves as a chemoattrac­
tant for EC sprouting in the initial stage of the angiogenic response.

[41,45,46]

PDGF 23 ± 6 pg/106 PLT Stimulates proliferation, differentiation and migration of fibroblasts 
or smooth muscle cells, providing support for the newly formed an­
giogenic sprout in the form of the pericyte (advanced stages of the 
angiogenic process).

[45,47,48]

FGFs 
(aFGF, bFGF/FGF-2)

bFGF: 
0.44 ± 0.15 pg/106 PLT

Serve as a chemoattractant for EC and stimulate proliferation of EC. [45,49]

EGF 1.05 pg/106 PLT EGF binding to specific receptor EGFR induces an EC response lea­
ding to increased tubule formation, cell division and movement.  
EGF can augment the proangiogenic effect of other factors.

[50–52]

HGF – HGF is mitogen for different cell types including EC. Mechanisms of 
its effects include stimulating of secretion of MMP-1, VEGF, HGF itself 
and its receptor, c-met, in EC. Alternative processing of the HGF  
α-chain mRNA produces anti-angiogenic fragments.

[53–55]

IGF – Stimulates VEGF mRNA synthesis in EC.
Facilitates EC motility and tubule formation.

[56–59]

angiopoetins – Ang-1 stimulates EC migration, tube formation, sprouting, and survival. [60–61]
SDF-1/CXCL12 – SDF-1α expression on activated platelet surface enhances endothe­

lial progenitor cell recruitment to sites of arterial injury.
[62]

CD40L/CD154 – CD40L binding to CD40 on EC promotes EC proliferation, migration 
and vessel-like structure formation through activation of the  
PI3K/Akt signalling pathway.

[63]

MMPs – Cleave different components of extracellular matrix (ECM) and base­
ment membrane, which support new vessel development by assi­
sting EC to migrate through the surrounding tissues.

[64]

S1P – Stimulates EC proliferation, migration and survival. 
Stimulates connective tissue growth factor (CTGF) production in ECs.

[65,66]

CTGF – Promotes EC growth, migration, adhesion and survival in vitro. [67,68]
heparanase – Cleaves heparan sulfate, angiogenesis regulators binding molecule, 

which increases their bioavailability and facilitating their participa­
tion in blood vessel development during wound healing, tumour 
growth and metastasis.

[6]

ANGIOGENESIS INHIBITORS
Factor Platelet concentration Mechanism of action Ref.
angiostatin – Inhibits proliferation of EC in vitro, formation of capillary structures 

in vitro and angiogenesis in vivo.
[69–71]

TSP-1 31 ± 12 ng/106 PLT Inhibits EC proliferation and capillary tube formation. It binds CD36 
on the endothelial surface and activates a signalling cascade leading 
to stimulation of caspase-3 and increased EC apoptosis.

[45,72–77]

PF4/CXCL4 and 
CXCL4L1/PF4var

12 ± 5 ng/106 PLT Inhibits binding of angiogenesis stimulators (e.g. VEGF, FGF) to cells. [45,78–83]

endostatin 5.6 ± 3.0 pg/106 PLT Inhibits tumour growth and VEGF-induced angiogenesis, but the me­
chanism of its action remains unclear.

[45,84]

TIMPs 
(TIMP-4, TIMP-1)

TIMP-4: 
120–160 pg/106 PLT
TIMP-1: 
< 10 pg/106 PLT

Hinder the angiogenic process via neutralization of the activity of dif­
ferent MMPs.

[85]

EC – Endothelial Cell, VEGF – Vascular Endothelial Growth Factor, PDGF – Platelet-Derived Growth Factor, FGFs – Fibroblast Growth 
Factors, EGF – Epidermal Growth Factor, HGF – Hepatocyte Growth Factor, IGF – Insulin–Like Growth Factor, SDF-1 – Stromal Cell- 
-derived Factor-1, MMPs – Matrix Metalloproteinases, S1P – Sphingosine-1-phosphate, CTGF – Connective Tissue Growth Factor, 
TSP1 – Thrombospondin-1, PF4 – Platelet Factor 4, TIMPs – Tissue Inhibitors of Metalloproteinases
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paration. An additional limitation is the 
animal models, which do not necessarily 
reciprocate the complexity of platelet 
receptors and tissue integrins. However, 
through the use of genetically altered 
animals, in vivo tracking dyes, and three 
dimensional in vitro models, some of the 

to activated endothelium, and their role 
in early tumour growth and tumour an­
giogenesis, has been difficult to esta­
blish. The main source of the difficulties, 
similar to the difficulties in establishing 
their role in wound healing, is the vari­
able method of platelet concentrate pre­

detectable changes in platelet levels of 
angiogenesis regulators [41,93].

Are Platelets Stimulatory or 
Inhibitory to Tumour Growth?
While postulated many decades ago, 
the consequences of platelet adhesion 

Fig. 1. Platelets contribution to the regulation of tumour angiogenesis and tumour progression. 1. Coagulation: Stimuli for platelet 
activation come from endothelial cells, as well as tumour stroma itself (expression of tissue factor, thrombin, ADP etc.). After activation, 
platelets change their shape, release PMP, α- and dense granule content and trigger coagulation cascade [8,11]. 2. Inflammation: Chemo­
kines (IL-8, histamine etc.) released by platelets are chemotactic for leukocytes and precursor cells from bone marrow. These cells also re­
gulate the tumour environment by release of growth and angiogenic factors [12]. 3. Angiogenesis: Platelets participate also in regulation 
of angiogenesis by releasing pro- and anti-angiogenic factors (VEGF, bFGF, PF-4 etc.), as well as by active sequestering of factors from the 
circulation [9]. 4. Stabilisation of vessel wall: Platelets stabilise the vessel wall and maintain intercellular connections by releasing factors, 
such as EGF, S1P, ang-1 etc., to prevent haemorrhage at the site of angiogenesis and inflammation [17]. 5. Circulation of tumour cells: Pla­
telets adhered to tumour cells protect them from immune recognition and the cytotoxic effects of NK cell cytokines, which enables sur­
vival in the circulation and migration to distant tissue sites [7,17,18]. 6. Adhesion/extravasation: Aggregates of platelets, leukocytes and 
tumour cells facilitate adhesion of tumour cells to endothelium and subsequent extravasation into distant tissues. Platelets also release 
factors promoting cell proliferation and increasing permeability of the vessel wall (e.g. VEGF) [6,17].



2S54

The Role of Platelets in Tumour Growth

Klin Onkol 2012; 25(Suppl 2): 2S50– 2S57 Klin Onkol 2012; 25(Suppl 2): 2S50– 2S57

ase of ADP and serotonin from the dense 
granules, is selective [113,120,121], but 
also amenable to influences beyond the 
proteolytic activity of thrombin or en­
vironmental influences such as tempe­
rature or acidity. In the setting of this 
new knowledge, a clot, which has been 
thought of as a simple “plug” to prevent 
bleeding, now appears to be a sophisti­
cated matrix that is rich in proteins and 
can regulate angiogenesis and inflam­
mation in a  locally-defined, reciprocal 
fashion.

Platelet-Derived Microparticles in 
Tumour Progression 
Elevation of platelet-derived micropar­
ticles (PMP) levels accompanies a num­
ber of disorders including cancer, athe­
rosclerosis, sepsis and diabetes  [126]. 
The role of PMP in disease development 
is unknown but the composition of PMP 
in the plasma of patients varies conside­
rably depending on the severity of the 
pathology [127]. The method of cell-cell 
communication may be dependent on 
the shedding of PMP upon platelet ac­
tivation. PMP host a  variety of cytoki­
nes and growth factors modulating an­
giogenesis and tissue regeneration. PMP 
have been shown to promote prolifera­
tion of endothelial cells and tubule for­
mation [128] but also survival and pro­
liferation of other cell types  [129,130]. 
Recent evidence suggests that PMP, 
much like platelets, significantly affect 
tumour metastasis including modifica­
tion of angiogenic responses. In gastric 
cancer, Kim et al showed that PMP levels 
are better predictors of metastasis than 
VEGF, IL-6, and RANTES [131]. It has been 
reported that PMP may serve as che­
moattractants to several lung cancer cell 
lines, activating phosphorylation of ERK 
and expression of membrane type 1-ma­
trix metalloproteinase [132]. PMP were 
also shown to stimulate proliferation 
and adhesion of cancer cells to fibrino­
gen and EC and enhance the adhesion 
and chemoinvasion of breast cancer cell 
lines [130]. PMP can induce secretion of 
MMP-2 by prostate cancer cells in vitro, 
facilitating their passage through the 
collagen that is a major component of 
extracellular matrix  [133] contributing 
to cancer cell spread.

nesis (e.g., VEGF and bFGF) do not reside 
in the same granules as the inhibitors  
(e.g., endostatin) [113].

A widely-held assumption is that pla­
telets degranulate en masse upon acti­
vation, and that serum is a good refle­
ction of their content  [114–117]. This 
assumption, which may have hindered 
the understanding of the reciprocal in­
teraction of platelets and tissues, may 
not be entirely correct. Angiogenesis 
regulators associated with α-granules 
of platelets, unlike the proteins of dense 
granules, are not indiscriminately rele­
ased in response to ADP, thrombin or 
epinephrine [41]. Activation of human 
platelets with adenosine diphosphate 
(ADP) stimulates the release of VEGF, but 
not endostatin whereas, thromboxane 
A(2) (TXA(2)) releases endostatin but 
not VEGF [118]. As has been well docu­
mented in the setting of gastric ulcers, 
platelet responses to thrombin are also 
graded [119–122]. Activation of high-af­
finity thrombin receptor PAR1 releases 
stimulators such as VEGF, whereas the 
low affinity thrombin receptor PAR4 ma­
inly releases inhibitors such as endosta­
tin [121]. Similarly, the increases in aci­
dity and temperature, which are typical 
in the setting of infection, inflammation, 
or cancer also change the sequence 
of release of angiogenesis regulators 
from platelets  [123,124]. This concept 
may be quite intuitive: if platelets con­
tain both stimulators and inhibitors of 
angiogenesis, a massive degranulation 
would be unlikely to provide the susta­
ined and carefully orchestrated signals 
required for modulation of normal an­
giogenesis. It is much more advantage­
ous if the majority of angiogenesis re­
gulators sequestered in platelets during 
early cancer development remain asso­
ciated with the platelet clot upon coa­
gulation [41]. Some may even be taken 
up by platelets during activation [125]. 
This finding may provide some early in­
sights into the mechanisms of tissue/ 
/platelet communication. Because the 
majority of proteins relevant to angio­
genesis are retained in the α-granules 
of platelets, and because the organiza­
tion of proteins within the α-granules is 
based on function [113]; the release of 
angiogenesis regulators, unlike the rele­

interactions between platelets, tumour 
cells, and other inflammatory cells wi­
thin the tumour microenvironment are 
beginning to emerge (Fig. 1). The early 
literature can be very confusing. For 
example, there is convincing evidence 
that platelets enhance the development 
of metastasis  [2,13–15,94–97] and pri­
mary tumour growth  [2,13,15,98], but 
some studies advocate that the effect 
of platelets on primary tumour growth 
is inhibitory [99–101] and that the inhi­
bition of platelet adhesion leads to pro­
motion of metastasis  [102]. Similarly, 
the most abundant proteins in platelets,  
e.g. PF4 (Tab. 1) are very potent inhibi­
tors of tumour growth  [103–109] and 
other very abundant platelet-associated 
proteins such as thrombospondin (TSP1) 
(Tab. 1), previously thought to be inhibi­
tory to angiogenesis [110], may be aug­
menting the metastatic process under 
specific conditions [111–112].

One possible explanation for these 
very contradictory findings may be that 
platelets are neither inhibitors nor stimu­
lators of tumour growth. Similar to their 
function in wound healing, they modu­
late rather than stimulate the malignant 
process, and the overall result of the pla­
telet effect may depend on the balance 
of stimulatory and inhibitory signals wi­
thin the tumour microenvironment. De­
pending on the reciprocal interaction 
between the existing host stromal cells, 
the oncogene-transformed tumour 
cells, and the recruited progenitors and 
inflammatory cells, the sum of these 
communications determines whether 
the outcome is growth, dormancy, or 
regression [94]. The final response may 
be less dependent on platelet numbers 
than on the specific content of stimu­
lators and inhibitors of angiogenesis in 
the α-granules of platelets. This content 
of growth stimulators and inhibitors is 
continuously modified, a process aided 
by the short half-life of platelets in circu­
lation (4–7 days in mice and 7–10 days 
in humans). This theory is informed by 
the recent finding that there is a higher 
organization of the opposing angioge­
nesis-related activities in platelets, ena­
bling a  differential release of either 
stimulators or inhibitors of angiogene­
sis [113,119]. The stimulators of angioge­
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In summary, the systems biology of 
cancer is not dissimilar from that of 
a wound. In general, platelets have a pro- 
-angiogenic effect in the setting of early 
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an anti-angiogenic effect in the setting 
of a healing wound, dormant tumours, 
or receding inflammation  [94]. Can­
cer may be thought of as “a wound that 
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